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ABSTRACT 
 
We quantify the economic impact of typhoons in the Philippines. To this end we construct a panel 
data set of local economic activity derived from nightlight intensity satellite images and a cell level 
measure of typhoon damage constructed from storm track data, a wind field model, and a stylized 
damage function. Our econometric results reveal that there is a statistically and potentially 
economically significant, albeit short- lived, impact of typhoon destruction on local economic activity. 
Constructing risk profiles from a 60-year historical set of storms suggests that (near) future losses in 
economic activity for frequent (5-year return period) and rare (50-year return period) events are likely 
to range from between 1.0% and 2.5%. 
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Typhoons are shown to have a significant negative, but short-lived impact on local economic 
activity, as proxied by the intensity of light usage at night. The historical distribution of typhoon 
storms in the past suggests that frequent storms are likely to cause damages of around 1%, whereas 
rarer ones will reduce the local economy negatively up to nearly 3% when they strike. 

I. INTRODUCTION 

In all the world, the Philippines is one of the countries most prone to tropical storms, with on average 
about 6–9 typhoons making landfall per year since 1970 (Blanc and Strobl 2016). Some scientists 
predict that their intensity may increase with climate change (Knutson et al. 2010, Emanuel 2013). 
Moreover, regardless of any increase in intensity or frequency, their effects are likely to be exacerbated 
by the Philippines’ rapidly growing population, particularly along the coast, and its localized 
environmental degradation (Holden and Marshall 2018). Unfortunately, the few existing studies on the 
impact of these storms in the Philippines have largely focused on specific aspects, rather than the 
economy as a whole. For example, Blanc and Strobl (2016) find that typhoons have caused losses in 
rice production of about 12.5 million tons since 2001, while Anttila-Hughes and Hsiang (2013) find 
that infant mortality rises by 13% after a typhoon. The purpose of this study is thus to quantify the 
economic impact of typhoons in the Philippines and to use these estimates to predict what expected 
(near future) impacts may be. 

Importantly, much of the existing literature on the impact of tropical cyclones has tended to 
focus on national or regional effects and the results have been rather mixed.1 However, while insightful, 
these macroeconomic studies are fairly limited in terms of providing useful information for formulating 
policies to build resilience. More specifically, tropical storms, as with most natural disasters, are inherently 
very local in nature and the local impact will likely be, at least to some extent, ‘aggregated out’ if 
researchers use too broad a regional unit of analysis. As a matter of fact, a number of papers investigate 
this “aggregation problem” to measure the impact of tropical storms, and found that aggregate data tend 
to underestimate the true impact of these extreme weather phenomena. For example, using yearly data 
Strobl (2011); Bertinelli and Strobl (2013); and Elliott, Strobl, and Sun (2015) show that national-level 
regressions can mask much of the impact of tropical storms at the local regional level. 

The challenge for researchers wishing to do a convincing analysis of the impact of tropical storms 
is threefold. First, the economic unit of analysis needs to be observed before and after a storm event. 
Second, as noted above, it is important to model the impact of the storm locally, which means explicitly 
modeling the impact spatially to capture the fact that relatively small differences in distance can result in 
considerable differences in damage. To this end, there has been considerable progress in the economics 
literature as research has evolved from using simple event indicators or likely endogenous ex post measured 
damages to employing physical storm models to approximate the local impact (see, for example, Strobl 
2012). The remaining, and perhaps greatest challenge, is being able to precisely quantify local economic 
activity to match it to the spatial heterogeneity of the storm impact. Data difficulty for most parts of the 
world have meant that most studies at best used fairly broad administrative regions.2 

                                                                 
1 The early literature has tended to take a cross-country macroeconomic approach to examine the impact of a disaster on 

growth. Examples include Loayza et al. (2012); Strobl (2012); Ahlerup (2013); and Crespo Cuaresma, Hlouskova, and 
Obersteiner (2008). See Noy and duPont IV (2016) for a summary of the macroeconomic studies. 

2  Broad administrative regions are used in, among others, Paxson and Rouse (2008); Leiter, Oberhofer, and Raschky 
(2009); Craioveanu and Terrell (2016); and Groen, Kutzbach, and Polivka (2017). For a map of the regions please see 
Figure 12. 
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In this study, we follow the approach of Bertinelli and Strobl (2013); Elliott, Strobl, and Sun 
(2015); and Mohan and Strobl (2017) and use local nightlight intensity, as derived from satellite 
images, to investigate the impact of typhoons in the Philippines. Importantly, nightlights have recently 
found widespread use as a measure of local economic activity where other satisfactory proxies are not 
available; see, for instance, Harari and La Ferrara (2013), Hodler and Raschky (2014), and 
Michalopoulos and Papaioannou (2014). To construct the measure of local typhoon damages, we 
employ actual storm tracks within a wind field model and a stylized wind exposure based damage 
function. These two constructed data series provide us with a locally measured (approximately 1 
square kilometer [km2]) balanced panel of over 120,000 economic units that are exposed to 
potentially damaging typhoon winds on average at least once every 3 years. Our econometric analysis 
shows that the effect of these storms can be substantial, but also that it is short lived. We then use 
historical storms dating back to 1950 and extreme value theory methods to construct risk profiles of 
damages nationally as well as regionally. 

The remainder of the paper is organized as follows. In section II, we describe our data, the 
construction of our plant-level panel, and our baseline estimating equation. In section III, we present 
our econometric results. We conduct our risk analysis in section IV. Section V concludes. 

II. DATA AND METHODOLOGY 

A. Nightlights 

The nightlight imagery we employ is provided by the Defense Meteorological Satellite Program 
satellites. In terms of coverage, each satellite has a 101 minute near-polar orbit at an altitude of about 
800 km above the surface of the earth, providing global coverage twice per day, at the same local time 
each day, with a spatial resolution of about 1 km near the equator. The resulting images provide the 
percentage of nightlight occurrences for each pixel per year normalized across satellites to a scale 
ranging from 0 (no light) to 63 (maximum light). Yearly values were then created as simple averages 
across daily values of grids, and are available from 1992 to 2013.3 We use the stable, cloud-free series; 
see Elvidge et al. (1997). We depict the nightlight intensity in the Philippines in 2013 in Figure 1. 
Accordingly, as would be expected, much of the nighttime brightness is in and around the National 
Capital Region. 

To assess how well nightlight intensity can proxy economic activity we depict the national 
gross domestic product (GDP) series (in millions of 2018 United States dollars, constant prices), taken 
from official figures published by the Philippines Statistics Authority, alongside the sum of total 
nightlight values for the period 1992–2013 in Figure 2. As can be seen, while the nightlight intensity 
appears to be more volatile, both series certainly seem to be moving together. We conducted a similar 
exercise for the main regions in the Philippines, where we grouped Region IV-A and Region IV-B into 
one region because for some of the earlier years, no separate GDP series were available. As can be 
seen from Figures 3, 4, 5, and 6, in most cases, they are relatively well correlated. 

  

                                                                 
3 For the years when satellites were replaced, observations were available from both the new and old satellites. In this paper, 

we use the imagery from the most recent satellite but as part of our sensitivity analysis we also reestimated our results 
using an average of the two satellites and the older satellite only. The results of these latter two options were almost 
quantitatively and qualitatively identical. 
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Figure 1: Nightlight Intensity, 2013

 

E = east, N = north, S = south, W = west.  
Source: Authors’ own data from Defense Meteorological Satellite Program satellites. 
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Figure 2: Total Gross Domestic Product and Total Nightlight Intensity, 1992–2013

 
GDP = gross domestic product, USD = United States dollars. 
Source: Author’s own. GDP data were taken from the Philippine Statistics Authority (2015) and nightlight intensity data were from the 
Defense Meteorological Satellite Program (1992–2013), measured in normalized values on a 0–63 scale. 

 

B. Grid Cell Level Typhoon Damages 

The damage caused by a typhoon depends mainly on three related aspects: wind speed, flooding and/or 
excess rainfall, and storm surge. A simplifying and commonly adopted assumption in the literature is that 
the latter two effects, which are much more difficult to model, are highly correlated with wind speed 
and thus one can use wind speed as a proxy for the potential damage due to a typhoon strike.4 Here we 
also adopt this convention. 

  

                                                                 
4  See Emanuel (2011) for a more detailed discussion on the relationship between wind speed and flooding and/or storm 

surge. 
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Figure 3: Total Gross Domestic Product and Total Nightlight Intensity—  
Autonomous Muslim Mindanao, Cordillera, National Capital Region, and Region I 

 
GDP = gross domestic product, USD = United States dollars.  
Note: Regions are defined in Figure 12.  
Source: Author’s own. GDP data were taken from the Philippine Statistics Authority (2015) and nightlight intensity data were from the Defense 
Meteorological Satellite Program (1992–2013), measured in normalized values on a 0–63 scale. 

 

Figure 4: Total Gross Domestic Product and Total Nightlight Intensity—Regions II, III, IV, and IX

 
GDP = gross domestic product, USD = United States dollars.  
Note: Regions are defined in Figure 12.  
Source: Author’s own. GDP data were taken from the Philippine Statistics Authority (2015) and nightlight intensity data were from the Defense 
Meteorological Satellite Program (1992–2013), measured in normalized values on a 0–63 scale. 
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Figure 5: Total Gross Domestic Product and Total Nightlight Intensity—Regions V, VI, VII, and VIII

 
GDP = gross domestic product, USD = United States dollars.  
Note: Regions are defined in Figure 12.  
Source: Author’s own. GDP data were taken from the Philippine Statistics Authority (2015) and nightlight intensity data were from the Defense 
Meteorological Satellite Program (1992–2013), measured in normalized values on a 0–63 scale. 

 

Figure 6: Total Gross Domestic Product and Total Nightlight Intensity—Regions X, XI, XII, and XIII

 
GDP = gross domestic product, USD = United States dollars.  
Note: Regions are defined in Figure 12.  
Source: Author’s own. GDP data were taken from the Philippine Statistics Authority (2015) and nightlight intensity data were from the Defense 
Meteorological Satellite Program (1992–2013), measured in normalized values on a 0–63 scale.
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1. Typhoon Tracks 

To model typhoon damage within the Philippines, we use storm tracks from the Best Track Archive for 
Climate Stewardship (IBTrACS) provided by the National Oceanic and Atmospheric Administration 
(Knapp et al. 2010). It is a unification of all best track data on tropical cyclones collected by weather 
agencies worldwide. Best track data are a postseason reanalysis from different available data sources, 
including satellites, ships, aviation, and surface measurements to describe the position and intensity of 
tropical cyclones. The unified data of the IBTrACS dataset identifies each storm uniquely by assigning 
an identification number, its geospatial position, and its intensity given by maximum sustained wind 
speed, among other characteristics. The data are reported at 6-hour intervals, and we linearly 
interpolated these to hourly data points. Figure 7 shows the tracks of typhoons and other tropical 
storms that formed around the Philippines between 1987 and 2013, where the red segment of the 
storm represents when it reached typhoon strength. 

2. Local Typhoon Wind Speed 

An important factor when it comes to measuring the damage to a locality is the wind speed that a 
location experiences during a typhoon and this will depend on the location relative to the movement 
and features of the storm. To model this, we apply the Boose, Serrano, and Foster (2004) version of the 
well-known Holland (1980) wind field model, according to which, the approximate local wind k, is 
given by: 

 𝑣௜௞௧ = 𝐺𝐹 ቂ𝑉௠௔௫,௞௧ − 𝑆 (1 − 𝑆𝐼𝑁(𝑇௜௞௧)) ௏೓,ೖ೟ଶ  ቃ  ൤ቀோ೘ೌೣ,ೖ,೟ோ೔೟ ቁ஻ೖ೟ 𝑒𝑥𝑝 ቀ1 −  ቂோ೘ೌೣ,ೖ,೟ோ೔೟ ቃ 𝐵௞௧ቁ൨భమ  (1) 

where Vmax is the maximum sustained wind velocity anywhere in the typhoon, T is the clockwise angle 
between the forward path of the typhoon and a radial line from the typhoon center to the point of 
interest i, Vh is the forward velocity of the tropical storm, Rmax is the radius of maximum winds, R is the 
radial distance from the center of the tropical storm to point i, and G is the gust factor. F, S, and B are 
the scaling factors for surface friction, asymmetry due to the forward motion of the storm, and the 
shape of the wind profile curve, respectively. 

In terms of implementing equation (1) the maximum wind speed Vmax is taken from the 
IBTrACS dataset, Vh	can be calculated following the movement path of the storm, while R and T can be 
determined by using the relative position between the eye of the typhoon and our point of interest i. 
We set G equal to 1.5 and S equal to 1 following Paulsen and Schroeder (2005) and Boose, Serrano, and 
Foster (2004), respectively. For the surface friction indicator F , Vickery et al. (2009) suggest that in 
open water the reduction factor is around 0.7 and that there is a reduction in wind speed of around 
14% on the coast and 28% 50 km inland. 

Following Elliott, Strobl, and Sun (2015), we linearize the reduction factor to capture the 
friction effect of the typhoon as it moves inland. In terms of the pressure profile parameter B and the 
radius maximum winds Rmax, we adopt Holland’s (2008) approximation method and the parametric 
model of Xiao, Xiao, and Duan (2009). 
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Figure 7: Tropical Storms, 1987–2013

 
E = east, hr = hour, km = kilometer, N = north, S = south, W = west.  
Source: Storm tracks are from Knapp, Kenneth. R., Michael C. Kruk, David H. Levinson, Howard J. Diamond, and Charles J. Neumann. 
2010. “The International Best Track Archive for Climate Stewardship (IBTrACS) Unifying Tropical Cyclone Data.” Bulletin of the 
American Meteorological Society 91 (3): 363–76. 
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3. Damage Function 

As noted by Emanuel (2011), there are energy dissipation reasons to assume that the relationship 
between wind speed experienced and damage incurred is to the cubic power. Moreover, there is 
unlikely to be any damage for winds that fall below 92 km/hour (hr). Incorporating these features and 
to ensure that the percentage of damage varies between 0 and 1, Emanuel (2011) proposes the 
following damage function for wind of storm k experienced at location i: 

 𝑓௜௞ =  ௩೔ೖయଵା ௩೔ೖయ      (2) 

where 

 𝑣௜௞ =  ெ஺௑ ሾ(௩೔ೖି ௩೟೓ೝ೐ೞ೓),଴ሿ௩೓ೌ೗೑ି ௩೟೓ೝ೐ೞ೓  (3) 

where vik is the maximum wind speed of storm k experienced at point of interest i, vthresh is the 
threshold below which no damage occurs, and vhalf is the threshold at which half of the property is 
damaged. Following Emanuel (2011), we assume values of 92 km/hr and 204 km/hr for vthresh and vhalf, 
respectively. 

Note that equation (1) is defined in terms of the percentage of damage caused per storm. 
Given that our nightlight data is annual, any given cell could feasibly be hit by several storms in a year. 
Hence, to account for multiple strikes, we assume that damages can accumulate over a year, but set 
the index’s annual value to have a maximum threshold of 1. 

C. Summary Statistics 

Table 1 provides summary statistics for the variables we use in our regression analysis for the 121,930 
cells that took at least one nonzero value in nightlight intensity over the 1992–2013 period. As can be 
seen, some cells reach the maximum on the normalized scale of nightlights, but the average value is 
around 4. However, the standard deviation of about 8 indicates that there is substantial variation in 
this regard in our dataset. In terms of the typhoon destruction index f there were a total of 59 storms 
over this sample period that produced nonzero values. Looking at its actual summary values, one finds 
that when a storm is damaging, it causes on average about 2% damage, while the highest observed 
damage in any cell over our sample period was close to 30%. As with nightlights, the standard deviation 
of the damage index indicates that there is substantial variation in the index once a storm is damaging. 

Table 1: Summary Statistics 

Variable Mean Standard Deviation Minimum Maximum

Nightlights 3.996536 8.391635 0 63

f ≠ 0 0.0224685 0.0399104 4.42e-21 .2967033

Source: Author’s own, using nightlight intensity data from Defense Meteorological Satellite Program. 1992–2013. Version 4 DMSP–OLS 
Nighttime Lights Time Series. National Centers for Environmental Information, National Oceanic and Atmospheric Administration, United 
States Department of Commerce. https://ngdc.noaa.gov/eog/dmsp/downloadV4composites.htm.  
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III. ECONOMETRIC ANALYSIS 

A. Regression Framework 

Our benchmark specification to investigate the impact of typhoon strikes on cell nightlight intensity is 
given by: 

 𝑁𝐿௜௧ = 𝛼 + ∑ 𝛽௙೟ష೗௅௟ୀ଴ 𝑓௜௧ି௟ + 𝜋௧ + 𝜇௜ + 𝜖௜௧ (4) 

where NL is nightlight intensity of cell i at time t, f is our damage index, potentially including its lags (l), 𝜇௜ is cell specific time invariant effects, and 𝜖 is the error term. Time dummies 𝜋௧  are included to 
account for time-varying effects common to all plants. We take account of time-invariant cell-specific 
unobservables 𝜇௜ by using a fixed effects estimator. In order to allow for serial and spatial correlation, 
we calculate Driscoll and Kraay (1998) standard errors. Arguably our coefficient of interest, namely the 
effect of typhoon damage, βfl, is unbiased from an economic decision-making perspective. More 
specifically, after controlling for fixed effects, any shocks in f will simply be random realizations drawn 
from the typhoon distribution. Thus, local economic agents may make location and other decisions, 
taking into consideration the local distribution of typhoon damage, but the actual event will be 
unanticipated after controlling for cell fixed effects. 

B. Econometric Results 

We first estimate specification 4 only with contemporaneous values of f, the results of which are 
shown in the first column of Table 2. Accordingly, typhoon destruction has a negative and significant 
impact on nightlight intensity. We subsequently systematically include lagged values of f into equation 
4, but these all proved to be insignificant, as can be seen from columns 2–5 of Table 2. 

Table 2:  Regression Results 

 (1) (2) (3) (4) (5) (6)
ft	 –2.669*  

(1.102) 
–3.037* 
(1.244) 

–3.016* 
(1.249) 

–3.003* 
(1.247) 

–3.113*  
(1.239) 

ft−1  3.193
(2.391) 

3.115
(2.513) 

3.139
(2.494) 

3.064 
(2.446) 

ft−2  0.583
(1.732) 

0.594
(1.751) 

0.508 
(1.810) 

ft−3  –0.0679
(1.048) 

–0.0816
(1.032) 

–0.0845 
(1.041) 

ft−4  –0.337
(0.741) 

–0.336 
(0.734) 

ft−5  1.203 
(0.825) 

ft+1   3.846
(1.951) 

Observations 2,682,460 2,682,460 2,682,460 2,682,460 2,682,460 2,682,460
Number of groups 121,930 121,930 121,930 121,930 121,930 121,930
Notes: Standard errors allowing for 2-year serial correlation in parentheses. ** and * indicate 1% and 5% significance levels, respectively. 
All specifications include year dummies. All models are estimated using a panel fixed effects estimator.  
Source: Author’s calculations based on data from Knapp, Kenneth R., Michael C. Kruk, David H. Levinson, Howard J. Diamond, and 
Charles J. Neumann. 2010. “The International Best Track Archive for Climate Stewardship (IBTrACS) Unifying Tropical Cyclone Data.” 
Bulletin of the American Meteorological Society 91 (3): 363–76 and wind field model; and Driscoll, John C. and Aart C. Kraay. 1998. 
“Consistent Covariance Matrix Estimation with Spatially Dependent Panel Data.” Review of Economics and Statistics 80 (4): 549–60. 
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As a placebo test, we also included f at t + 1 in 4, i.e., a year prior to the actual storm 
occurrence. The estimated, shown in the last column of Table 2, reassuringly, is insignificant. We also 
implemented a Fisher type randomization test, where we randomly reshuffled years in our panel data, 
breaking the temporal link between damages and nightlight intensity. This allows us to compute the 
probability of observing our significant estimates compared to randomly assigning years. A histogram 
of the estimated t statistics for ft is shown in Figure 8. As can be seen, compared to the distribution, the  
t statistics under the randomization, the actual value, shown by the red vertical line, is unlikely to be 
random. As a matter of fact, the t statistic for actual estimate on the contemporaneous value of the 
typhoon damage index is in the 0.01 portion of the tail. 

Figure 8: Histogram of Tropical Storms, 1987–2013

 

Note: t statistic refers to the statistical t test of the null hypothesis that the coefficient on f is zero.  
Source: Author’s illustration using data from Knapp, Kenneth R., Michael C. Kruk, David H. Levinson, Howard J. Diamond, 
and Charles J. Neumann. 2010. “The International Best Track Archive for Climate Stewardship (IBTrACS) Unifying Tropical 
Cyclone Data.” Bulletin of the American Meteorological Society 91 (3): 363–76. 

 

To put our estimates into an economic context, we consider the effect of the average annual 
damage incurred from a damaging typhoon, i.e., 2.24%. Our estimated coefficient implies that this will 
cause about 3.113 ∗ 0.022/4 = 0.017, i.e., about a 1.7% reduction in nightlight intensity. If we take the 
largest observed storm damage (f = 0.297), then this impact will be 3.1139 ∗ 0.297/4 = 0.23, i.e., a 23% 
reduction in local economic activity as measured by nightlight intensity. We can also calculate the total 
reduction in economic activity due to typhoons over the period 1992–2013 by using our estimated 
coefficient, multiplying it by the observed values of f	 at the cell level, summing implied nightlight 
reduction nationally, and comparing it to total national nightlight intensity. Doing so suggests an average 
annual loss of a little less than a half percent (0.48%), with the largest loss (1.96%) occurring in 2006. 
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IV. RISK ANALYSIS 

A. Extreme Value Analysis 

It is common practice to model the probabilities of relatively rare occurrences using extreme value 
theory, see for instance Jagger and Elsner (2006) for hurricane wind modeling. One result of Extreme 
Value Theory is that there are three possible limit distributions for maxima of independent random 
variables: the Fr´echet, the Gumbel and the Weibull, which can all be cast within the Generalized Extreme 
Value family. Depending on the value of their exponent, they have finite tails, exponential or power 
tails. A standard approach in modeling extremes is the Peaks Over Threshold (POT) model, based on 
the Pickands Balkema de Haan theorem, which states that for a large class of distributions, 
exceedances over a high threshold m are well approximated by a Generalized Pareto Distribution 
(GPD), which is characterized by a scale parameter σ and by a shape parameter ζ, whose value 
corresponds to the tail parameter as the Generalized Extreme Value. We thus consider that for each 
region i, the distribution of typhoon impacts, Li, can be approximated as follows: 

 𝑃(𝐿௜ ≤ 𝑥) =  ቐቀ1 − 𝐹௜,௡(𝑚௜)ቁ ቆ1 − ቀ1 +  𝜁 ௫ି௠೔ఙ೔ ቁ௭శ
ିଵ ఍೔ൗ ቇ +  𝐹௜,௡(𝑚௜);   𝑓𝑜𝑟 𝑥 ≥ 𝑚௜𝐹௜,௡(𝑚௜);                                                                                   𝑓𝑜𝑟 𝑥 < 𝑚௜  (5) 

where 𝑧ା =  𝑚𝑎𝑥(0, 𝑧),  and 𝐹௡(𝑥)  =  ଵ௡  ∑ 1{௅೔ೕஸ௫}௝  is the empirical distribution of an indicator 
function when x is greater than or equal to Lij, based on the sample (Li1, . . . , Lin). A negative value of the 
shape parameter ζi implies that the distribution follows a short-tailed Pareto distribution. In contrast, 
when ζi	 = 0, the distribution has a thin tail with exponential decay and follows an exponential 
distribution. Finally, when ζi	 > 0, the distribution has a fat tail, with a power decay, and can be 
considered an ordinary Pareto distribution. 

B. Threshold Selection 

An important task in modeling threshold excesses is the choice of the threshold m. A standard 
approach is to examine mean residual (MRL) plots. More specifically, the basic idea is that if the 
generalized Pareto distribution is valid for excesses of the threshold m then it should be equally valid 
for all thresholds above m. As noted by Coles (2001), this means that the mean of the excesses E(L − 
m|L > m) should change linearly with increases in m. One can check this by examining the locus  
of points: 

 ቄቀ𝑚, ଵ௡೘  ∑ ൫𝐿(௜) − 𝑚൯௡೘௜ୀଵ ቁ : 𝑚 <  𝐿௠௔௫ቅ (6) 

where L(i), ..., L(nm
) consist of the nm observations that exceed m and Lmax is the largest of the Li. 

Graphing the locus of points from equation (6) provides the MRL. 

C. Results 

To generate a distribution of losses, we took all tropical storms from the lBTrACS dataset from 1950 to 
2013, interpolated these to hourly values and then, using the nonzero cell grids of 2013, calculated the 
implied damage under each storm and each cell using equations (1), (2), and (3). We then multiplied  
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the value of the nightlight intensity of the cell with the estimated coefficient on ft from Table 2 to 
calculate storm by cell losses. Summing the implied losses in nightlight intensity for each cell nationally 
or by region, by storm, provided a distribution of losses from which we can estimate an extreme value 
distribution. Importantly, one may want to note that we are thus implicitly assuming that the 
distribution of losses over the period 1950–2013 is stationary. 

Starting first with the nationally implied loss distribution, we chart the implied MRL plot in 
Figure 9. Accordingly, a threshold of 5,000 seems reasonable, in that the MRL plot is roughly linear 
thereafter, but one still has enough observations to estimate a POT model. 

Figure 9: Mean Residual Life Plot: National Losses

 

Source: Author’s calculation from model output.  

 

We next estimated a GPD model with the threshold of 5,000 using maximum likelihood 
methods. This produced an estimate of the scale parameter σ of 9,565.98 and the shape parameter ζ 
of −0.68, both statistically significant at the 5% level. Thus, the estimated GDP has a short-tailed 
Pareto distribution. To assess the empirical fit of our estimated model, we plot the empirical quantiles 
versus model quantiles in Figure 10, also known as the qq plot. As can be seen, these follow relatively 
closely the diagonal line and thus the empirical fit is reasonably satisfactory. 
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Figure 10: Quantile–Quantile Plot: National Losses

 

Source: Author’s calculation from model output.   

 

We can now use our estimated POT model to calculate the expected losses of corresponding 
return periods. More specifically, a given level of losses Ls	, with return period s, above threshold m is 
equal to: 

 𝑳𝒔 = 𝒎 +  𝝈𝜻 ൣ(𝑺𝜻𝒎)𝜻 − 𝟏൧ (7) 

where ζm = P {L > m}. We plot the losses associated with return periods from 5 to 50 years, calculated 
as a percent of total 2013 nightlight intensity in the Philippines, along with 95% confidence bands, in 
Figure 11.  

Looking at the estimates more precisely, one finds that a 5-year return period storm will 
produce losses of about 1% of national economic activity. This rises as one considers rarer and rarer 
events. For example, 10-year, 20-year, and 50-year return period losses result in 1.6%, 2%, and 2.4% 
reduction, respectively, of total national economic activity in the year of the storm as estimated by 
nightlight intensity. One may want to note that the rise in losses with increasing return periods is 
relatively gradual, as is common with short-tailed distributions, which we have here. 
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Next we examined the implied distribution of total losses at the regional level, as shown in 
Figure 12. To this end, we, as with the national series, established region-specific thresholds by 
examining the corresponding MRL plots, and then estimated the region-specific GPD distributions 
using these.5 This allowed us to then calculate n-year return period losses for each region.  

Figure 11: N-Year Return Period National Losses

 

CI = confidence interval, N = variable representing any return period.  
Source: Author’s calculation from model output. 

 

We report these for 5-, 10-, 20-, and 50-year return periods for reach region in Table 3. 
Accordingly, the expected losses differ considerably regionally. More specifically, highest losses are 
expected in Region VIII, followed closely by Region II. For instance, for Region VIII, 5-, 10-, 20-, and 
50-year return period damaging typhoons correspond to 7.58, 14.5, 17.96, and 20.04 percentage losses 
in economic activity, respectively. In contrast, losses are fairly low in the National Capital Region, 
Region IX, or Region XII. For these three areas, even 20-year return period storms are not likely to 
cause more than 1% reduction in contemporary economic activity. 

 

  

                                                                 
5  One should note that for some regions, there were difficulties in reaching convergence in the maximum likelihood 

estimation given the small number of observations above the chosen threshold. For these we took the estimates achieved 
after 1,600 iterations. It is for this reason that we do not report confidence intervals, since for some regions, these could 
not be calculated due to the lack of convergence. 
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Figure 12: Regions of the Philippines

 
E = east, km = kilometer, N = north, S = south, W = west.  
Source: GADM. 2018. “Database of Global Administrative Areas.”  https://gadm.org/. 
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Table 3: Impact Return Periods by Region  
(%) 

Region 5 Years 10 Years 20 Years 50 Years

Autonomous Region in Muslim Mindanao 1.63 1.69 1.72 1.74

Cordillera Administrative Region 3.17 8.45 10.8 12.03

National Capital Region 0.50 0.67 0.76 0.81

Negros Island Region 4.92 5.68 5.81 5.83

Region I 3.67 5.77 6.81 7.43

Region II 1.60 13.13 17.85 20.12

Region III 2.19 3.07 3.73 4.35

Region IV-A 1.46 2.07 2.69 3.54

Region IV-B 3.91 5.49 6.25 6.68

Region IX .09 0.09 0.09 0.09

Region V 9.37 11.76 14.74 19.85

Region VI 3.25 4.65 5.32 5.71

Region VII 1.14 5.05 6.48 7.09

Region VIII 7.58 14.50 17.96 20.04

Region X 4.67 8.94 11.08 12.36

Region XI 1.21 1.30 1.34 1.37

Region XII 0.75 0.81 0.84 0.85

Region XIII 5.32 8.34 9.84 10.75

Note: Data are generated using region-specific thresholds and Generalized Pareto Distribution models. 
Source: Author's calculation. 

 
V. CONCLUSIONS 

In this paper, we quantified the economic impact of typhoons in the Philippines. To this end, we used 
satellite-derived measures of nightlight intensity as measures of local economic activity and combined 
these with constructed damages based on storm tracks, a wind field model, and a stylized damage 
function. Econometric analysis of our constructed panel dataset over 21 years showed that the impact 
can be substantial for the most damaging storms, but does not last beyond a year. Using a set of 
historical storm tracks observed over the last 60 years, we then constructed risk profiles. These 
suggested that relatively frequent storms, i.e., those with a return period of at least 5 years are likely to 
cause about a 1% short-term reduction in economic activity, while rarer storms, such as those with return 
periods of at least 20 years are likely to induce a reduction of at least 2%. These predictions differ 
starkly across regions in the Philippines. 

While our analysis provides arguably a good starting point with which to quantitatively assess 
the economic impact of typhoons in the Philippines, there are a number of weaknesses that could be 
addressed with future research. For one, nightlights are likely to directly best capture a very specific 
aspect of economic activity, namely those associated with using lighting at night, such as services or 
manufacturing. In contrast, while the use of electricity is likely to have some positive relationship with 
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other forms of local production, such as agriculture, it is not clear how much this is the case, and thus 
how much the results here are underestimating the total local and national impact. Further research in 
this regard could prove a fruitful input into the analysis. Additionally, the risk analysis undertaken here 
suffers from three weaknesses that could be addressed in the future.  

Firstly, the risk analysis undertaken here rests on the important assumptions that past historical 
storms are reflective of current climate and that this climate can be used to predict typhoon activity in 
the (near) future. Including predictions under different climate change scenarios could additionally provide 
a further sense of the range of possible outcomes for the longer-term future. Secondly, one may also 
want to take into account the likely growth of vulnerability in affected coastal areas through population 
expansion and environmental degradation in the predictions. The third weakness concerns the role of 
typhoon warnings. Clearly, if typhoon warnings are issued in a timely manner, the reactions to that 
could reduce the negative effect of the storms, which is likely to have become more important in 
recent years when warnings are issued by the Philippines Atmospheric, Geophysical, and Astronomical 
Services Administration. Future research with more recent nightlight intensity data could explicitly try 
to quantify the role of warnings in dampening the effect of typhoons on local economic activity. 
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Typhoons are shown to have a significant negative, but short-lived impact on local economic activity in the 
Philippines, as proxied by the intensity of light usage at night measured from satellites. Using this proxy, an 
analysis of the historical distribution of typhoons was conducted to predict future impacts. A key finding was 
that frequent, low-damaging typhoons are likely to reduce local economic activity by around 1%, while rarer,  
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