GSTDTAP  > 地球科学
ESA’s Hera asteroid mission borrows eyes of NASA’s Dawn
admin
2019-03-18
发布年2019
语种英语
国家欧洲
领域地球科学
正文(英文)18 March 2019

The mission to the smallest asteroid ever explored will employ the same main camera as the mission to the largest asteroids of all. ESA’s proposed Hera spacecraft to the Didymos asteroid pair has inherited its main imager from NASA’s Dawn mission to the Vesta and Ceres asteroids.

Hera is currently the subject of detailed design work, ahead of being presented to Europe’s space ministers at the Space19+ Ministerial Council at the end of this year, for launch in late 2023. The spacecraft will survey a tiny 160-m diameter moon of the 780-m diameter Didymos asteroid, in the aftermath of a pioneering planetary defence experiment.

Dawn spacecraft at Vesta

But the Asteroid Framing Camera (AFC) Hera will use to navigate through space and survey its targeted double asteroids is already built and ready. Two of these cameras – Hera will carry a pair, for redundancy – are sitting in protective nitrogen gas inside a clean room in Göttingen, Germany.

“The AFC was designed specifically for NASA’s Dawn mission to the two largest bodies in the Asteroid belt: Vesta, at 525 km across, and 946 km diameter Ceres,” explains Holger Sierks of the Max Planck Institute for Solar System Research.

“There was no other camera aboard the spacecraft so the AFC had a mission-critical role, being employed both for navigation and scientific investigation.

Asteroid Framing Camera

“The AFC worked like Swiss clockwork throughout Dawn’s 11-year lifetime. Before Dawn finally ended in November 2018 the spacecraft came as close as 30 km from the surface of Ceres, and returned spectacular views of its striking bright spots.

“At the same time the camera, equipped with seven spectral filters from the visible to the near-infrared, was able to gather spectral information on these formations, as well as the rest of the asteroids. An eighth clear filter was used when the AFC was employed for navigation purposes and for broadband surface science.”

Spectral filters

Two AFC flight units were supplied to NASA by the Institute, in cooperation with the DLR German Aerospace Center and the Technical University of Braunschweig’s  Institute of Computer and Network Engineering. A spare camera was built and kept at the Institute to replace a flight unit if needed.

“We still had spare, flight quality subsystems including the optics that we could integrate into a full camera, so ended up with two flight ready spares on the shelf,” adds Holger. “We wanted to find a flight use for them, and decided we should contribute these fully mission proven cameras to Europe’s next asteroid mission free of charge.”

Hera at Didymos

The 5.5 kg AFC resembles a computer printer-sized box containing power and mass memory with a thermally insulated telescope extending out from it. Maximum image sensitivity is ensured by cooling the telescope’s CCD light detector down to -60 °C.

One qualification model camera has already been lent to GMV in Spain as they develop autonomous navigation systems for Hera. This allows the team to test their feature-detecting algorithms with the same hardware as will actually be flown.

Camera being tested

While the AFC was designed specifically for Vesta and Ceres, Holger explains the camera is also a very good fit for Hera – especially with its dual science and navigation functionality: “When we designed it, those two asteroids were only known to us as little dots in the sky, just a few pixels across at best using the Hubble Space Telescope, like the Didymos system today. The camera’s optics – the work of the Kayser-Threde company in Munich, now owned by OHB – are distortion free with a sharp focus, right down to 150 m from the target surface.”

Cameras in storage

The Max Planck Institute for Solar System Research also built the Rosetta comet chaser’s main Osiris science imager, so has plenty of experience in imaging distant planetoids close up. “These bodies would be dark like charcoal to the human eye, so it takes highly sensitive detectors and carefully judged exposure times to see what we see.”

Hera’s planetary defence purpose feels personal to Holger and the rest of the Institute team. The team recently met in the German town of Nördlingen, located inside a 24-km diameter crater, formed by an impacting binary asteroid just like Didymos and its moon an estimated 14 million years ago. 

Loading...
Hera mission
URL查看原文
来源平台European Space Agency
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/108276
专题地球科学
推荐引用方式
GB/T 7714
admin. ESA’s Hera asteroid mission borrows eyes of NASA’s Dawn. 2019.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。