GSTDTAP  > 地球科学
Antibiotic resistances spread faster than so far thought
admin
2019-02-18
发布年2019
语种英语
国家美国
领域地球科学
正文(英文)
Piaractus mesopotamicus, a South American species known as pacu, is often raised in aquaculture. Credit: Helmholtz Zentrum München

By studying fish raised in aquaculture, researchers from the Helmholtz Zentrum München, the University of Copenhagen and the University of Campinas in Brazil have shed new light on the mechanisms by which antibiotic resistance genes are transferred between bacteria. According to the study published in the journal 'Microbiome', those mechanisms are more varied than previously thought.

"In the past 70 years, the use of in human and has steadily increased, leading to a dramatic rise in resistant microorganisms," says Prof. Dr. Michael Schloter, head of the Research Unit for Comparative Microbiome Analyses (COMI) at Helmholtz Zentrum München. It is especially alarming that many microorganisms are resistant not just to one antibiotic, but to a whole range of different substances, states the corresponding author of the recent study. This poses particular problems in the treatment of infectious diseases. "We therefore set out to discover the mechanisms responsible for resistance development," he says.

To this end, he and his team, together with Danish scientists led by Gisle Vestergaard (University of Copenhagen and Helmholtz Zentrum München), investigated raised in aquaculture. Specifically, they studied Piaractus mesopotamicus, a South American species known as pacu that is often raised in aquaculture. The fish received the antibiotic florfenicol in their food for 34 days. During this time and after the application period, the researchers took samples from the digestive tract of the fish and looked for relevant genetic changes in the gut .

Resistance genes hop around the genome

"As expected, administration of the antibiotic induced an increase in the responsible for resistance to that antibiotic," explains COMI doctoral student Johan Sebastian Sáenz Medina, lead author of the paper. "One example are genes for pump proteins, which simply remove the active substance from the bacteria again. However, we were particularly surprised by the different mechanisms that we could detect by which are spread amongst gut bacteria of the fish" Sáenz Medina explains. "This suggests that the bacteria also exchange resistance through viruses, known as phages, and transposons."

Further metagenomic studies confirmed that these mobile genetic elements induce a fast distribution of resistance genes among genomes of different organisms. So far it has been postulated that only plasmids (in essence, easily transferable mini-chromosomes) are mainly responsible for the exchange of resistance genes.

"The finding that is also extensively transferred between bacteria without the involvement of plasmids is really quite surprising," says Michael Schloter. "Based on this observation, relevant dissemination models should be reviewed and modified. In addition, our data certainly lead us to question whether and to what extent we should continue to use antibiotics in the world's increasing number of aquacultures."

Explore further: Supermarket produce harbors antibiotic-resistance genes

More information: Johan S. Sáenz et al. Oral administration of antibiotics increased the potential mobility of bacterial resistance genes in the gut of the fish Piaractus mesopotamicus, Microbiome (2019). DOI: 10.1186/s40168-019-0632-7

URL查看原文
来源平台Science X network
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/109441
专题地球科学
推荐引用方式
GB/T 7714
admin. Antibiotic resistances spread faster than so far thought. 2019.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。