GSTDTAP  > 地球科学
Expansion of transposable elements offers clue to genetic paradox
admin
2019-03-19
发布年2019
语种英语
国家美国
领域地球科学
正文(英文)
Expansion of transposable elements explains genetic paradox of biological invasion. Credit: IBCAS

Species often experience a genetic bottleneck that diminishes genetic variation after speciation or introduction into a new area. Though bottlenecks in population size always reduce fitness and evolutionary potential, introduced species often become invasive. This is known as the genetic paradox of invasion.

Now, a research group led by Prof. Guo Yalong from the Institute of Botany of the Chinese Academy of Sciences (IBCAS), together with SONG Ge, and Sureshkumar Balasubramanian from the School of Biological Sciences, Monash University, Australia, has revealed that (TE) insertions could potentially help species with limited genetic variation adapt to novel environments.

To evaluate how TE insertions drive rapid phenotypic variation and help plants adapt to new environments, the researchers compared an annual and inbreeding forb (Brassicaceae), Capsella rubella, to its outcrossing sister species Capsella grandiflora.

They found that transposable elements (TEs) are highly enriched in the gene promoter regions of C. rubella compared with its outcrossing sister species C. grandiflora.

Interestingly, they found that a number of polymorphic TEs in C. rubella are associated with changes in , including TEs inserted into the FLOWERING LOCUS C gene, which is one of the key determinant genes of flowering time.

Intriguingly, the accessions with TE insertion are early flowering and distributed in the southernmost habitat of this species, around the Mediterranean region. This region has a Mediterranean climate and is characterized by high precipitation, warm winters, and dry, hot summers.

These results indicate that the caused by the expansion of TEs can help species quickly adapt to new habitats. Its influence on adaptive traits could account for the genetic paradox of biological invasion to some extent.

This study was published in PNAS on March 15 and was supported by the National Natural Science Foundation of China, the Strategic Priority Research Program of the Chinese Academy of Sciences, the Innovative Academy of Seed Design, the Chinese Academy of Sciences, the Chinese Academy of Sciences President's International Fellowship for Visiting Scientists, and the Monash University Larkins Fellowship.

Explore further: Getting more mileage from microsatellites

More information: Xiao-Min Niu et al, Transposable elements drive rapid phenotypic variation in Capsella rubella, Proceedings of the National Academy of Sciences (2019). DOI: 10.1073/pnas.1811498116

URL查看原文
来源平台Science X network
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/110776
专题地球科学
推荐引用方式
GB/T 7714
admin. Expansion of transposable elements offers clue to genetic paradox. 2019.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。