GSTDTAP  > 地球科学
Phage-host interactions are more complicated than most laboratory studies suggest
admin
2018-03-30
发布年2018
语种英语
国家美国
领域地球科学
正文(英文)
Phage-host Interactions are More Complicated than most Laboratory Studies Suggest
Researchers studied molecular data on phages to discover how the viruses affect environmentally important bacteria in nature. Credit: Environmental Molecular Sciences Laboratory

For years, scientists have experimented with phages—the viruses that infect bacteria—to learn how they change their host. Because such studies are difficult to accomplish in the wild, most have focused on viruses and host cells tailored for laboratory experiments. Now a team of scientists departs from these "optimal" laboratory-suitable viruses to study the molecular response when bacteria and phages interact in nature, where phages do not always encounter the perfect host.

Phage research has helped identify DNA as the hereditary material and described the nature of gene expression in microbes, but studies of interactions are largely limited to laboratory studies featuring optimal infection conditions. Broadening the understanding of how efficiently phages infect a host in nature can help scientists develop better ecosystem models, devise more sustainable biotechnology, and improve human health.

Building on previous research, scientists from The Ohio State University, Pacific Northwest National Laboratory, and EMSL, the Environmental Molecular Sciences Laboratory, studied vast amounts of data on proteins and the messenger RNA molecules associated with them to look at how efficiently two different phages infected similar bacteria. The bacterial strains are common in the environment, and their close relatives are found in soils, water, and humans. They affect nutrient turnover, health, and disease. By taking regular measurements as the infection progressed using the Orbitrap mass spectrometer and next generation sequencers at EMSL, a DOE Office of Science user facility, the team was able to capture all the internal viral and bacterial changes. For the first time, the work identified multiple infection inefficiencies in such interactions—from poorer adsorption at the cell surface to intercellular responses by the host that repressed the phage's ability to take over the host, express its genes, or make its proteins. These inefficiencies suggest phage- interactions in nature are more complicated than traditional studies have shown. Results will help scientists better understand, predict, and enhance the functioning of microbial communities important to industry, agriculture, and .

Explore further: CRISPR-Cas9 may be a double-edged sword for bacteria

More information: Multiple mechanisms drive phage infection efficiency in nearly-identical hosts. ISEM J. (2018). DOI:org/10.1038/s41396-018-0099-8

URL查看原文
来源平台Science X network
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/117141
专题地球科学
推荐引用方式
GB/T 7714
admin. Phage-host interactions are more complicated than most laboratory studies suggest. 2018.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。