GSTDTAP  > 地球科学
Point patterns help to predict landslides
admin
2018-05-24
发布年2018
语种英语
国家美国
领域地球科学
正文(英文)
Point patterns help to predict landslides
The team used their model to examine data from a 2009 rain-induced landslide in Messina, Italy. Credit: KAUST

Examining the detail of a natural disaster in Italy in 2009 has helped KAUST researchers develop a statistical model that could help predict landslides in specific areas under given storm scenarios.

Existing susceptibility models use a presence-absence structure to predict whether a landslide is likely within a given area. These binary models, however, are unable to predict vital information, such as how many landslides might occur on any specific slope.

Luigi Lombardo, and his supervisor Raphaël Huser, at KAUST, with Thomas Opitz at INRA in France, developed a statistical that exploits the rigorous probabilistic framework of point processes. This describes the behavior of random point patterns, such as landslide-triggering locations.

Their statistical methodology enables the model to predict not only where, but also how many, landslides may occur in a given area depending on climatic circumstances.

The team used their model to examine data from a 2009 disaster in Messina, Italy, which followed an intense storm. The model generated highly accurate maps of the disaster zone.

"Following two periods of wet weather, the storm dumped 250 millimeters of rain on a small area in less than eight hours," says Lombardo. "The soils on the steep slopes were already saturated, and the deluge resulted in around 5,000 landslides of varying sizes across about 100 square kilometers."

Point patterns help to predict landslides
Natural disasters disrupt important services, such as road access and public transport. Credit: KAUST

The team accessed high-resolution satellite images showing the landscape before and after the storm. However, they did not have complete data regarding the landslide trigger—the rainfall event—because there was only one weather station in the storm zone.

"Scientists simply do not have the instrumentation in place to measure every natural disaster in depth," says Lombardo. "However, we realized that the data could 'talk' to us and help us reconstruct the storm. We knew where the worst, repeated landslides had occurred, and logic suggests that these points were the areas hit by the most rainfall."

"We included a latent spatial effect in our to flexibly capture and reconstruct the evolution of the storm," says Huser. "This latent spatial effect, combined with other variables, such as slope steepness, soil type and vegetation cover, yielded an unprecedented prediction accuracy."

"The benefit of this approach is that we can easily simulate various latent spatial effects, each one with a different pattern, and provide a comprehensive set of likely future landslide scenarios as a evolves," says Lombardo. "Authorities could then take better preventative actions and evacuate people to safer ground. Similar models could be built for other landslide-prone areas in the world."

Explore further: New NASA model finds landslide threats in near real-time during heavy rains

URL查看原文
来源平台Science X network
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/121537
专题地球科学
推荐引用方式
GB/T 7714
admin. Point patterns help to predict landslides. 2018.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。