GSTDTAP  > 地球科学
Solar cell design using diverse plant pigments
admin
2017-07-04
发布年2017
语种英语
国家美国
领域地球科学
正文(英文)

A member of the Faculty of Biology of the Lomonosov Moscow State University, in cooperation with colleagues, has optimized and characterized TiO₂-based solar cell design using diverse plant pigments. The study involved two types of solar cells with two photosensitizers, thylakoid membrane preparations and anthocyanin-enriched raspberry extracts. The project results have been published in the International Journal of Hydrogen Energy.

Suleyman Allakhverdiev, one of the article authors, says, "To understand processes occurring in the solar cells, investigations characterizing the efficiency and stability with regard to environmental factors are also required. For this aim, novel instrumentation for the investigation of environmental effects on photocurrent generated by solar cells has been designed and constructed. The system reflects conditions required for effective and stable functioning of the solar . We've designed and studied in which components of the photosynthetic apparatus are used as photosensitizers. With the help of the stabilizing compounds, we have increased the active stable operation time of a system by four to six times. We've also proved the possibility of applying long-wave forms of chlorophyll, capable of absorbing low-energy photons, which aren't absorbed by usual ."

In order to create the solar cell, the scientists used methods of immobilization of various biological pigment-protein complexes on the surface of nanostructured titanium dioxide.

The scientist concludes: "In the future, we are going to use complexes of isolated reaction centers of photosynthesis as sensitizers in such systems, as well as chlorophyll molecules which are able to absorb light in far red and near infrared spectral ranges. Biological systems used as photosensitizers are inexpensive and environmentally safe. Moreover, the same principle could be applied to the creation of photocatalytic water cleavage systems with the outcome of molecular hydrogen, which could be a promising alternative to fossil fuel. Creation of artificial photobiosynthesis systems could meet ever-increasing needs for cheap, environmentally safe and energy-rich fuel types."

Explore further: Solar cell design with over 50% energy-conversion efficiency

More information: R.A. Voloshin et al, Optimization and characterization of TiO 2 -based solar cell design using diverse plant pigments, International Journal of Hydrogen Energy (2016). DOI: 10.1016/j.ijhydene.2016.11.148

URL查看原文
来源平台Science X network
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/122909
专题地球科学
推荐引用方式
GB/T 7714
admin. Solar cell design using diverse plant pigments. 2017.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。