GSTDTAP  > 地球科学
New threat from ocean acidification emerges in the Southern Ocean
admin
2019-08-26
发布年2019
语种英语
国家美国
领域地球科学
正文(英文)
IMAGE

IMAGE: Diatoms are unique phytoplankton in that they need silicic acid to produce silica cell walls. Under the microscope they look like beautiful glass jewellery boxes, but importantly, this dense, glass-like... view more 

Credit: Katherina Petrou

The oceans act as a carbon sink and have already absorbed more than 40% of anthropogenic carbon emissions. The majority of this CO2 has been taken up by the Southern Ocean making these waters hotspots of ocean acidification (OA).

Lead author of the paper published in Nature Climate Change, Dr Katherina Petrou from the University of Technology Sydney, said that although changes in ocean pH have been shown to impact marine calcifying organisms, the consequences for non-calcifying marine phytoplankton are less clear.

"Previous studies reported a range of responses to OA [in phytoplankton] yet rarely considered how environmental pH shifts might affect silicification rates in diatoms," she says.

"Diatoms are unique phytoplankton in that they need silicic acid to produce silica cell walls. Under the microscope they look like beautiful glass jewellery boxes, but importantly, this dense, glass-like armour promotes sinking, which makes diatoms an important conduit for transport of carbon to the deep ocean where it can be stored for millennia."

Diatoms are responsible for around 40% of ocean productivity which means they play a major role in supporting marine food webs, sustaining life for millions of creatures, including humans.

The research was carried out the Australian Antarctic base, Davis station, by a team of scientists from the University of Technology Sydney (UTS), Southern Cross University (SCU), the Australian Antarctic Division (AAD) and the University of Tasmania. Using large 650 L experimental tanks, a temperature controlled 40-foot container and natural coastal water, their research was designed to investigate the effects of predicted future changes in ocean acidity on the community structure of the Antarctic phytoplankton.

"We were alarmed to find that diatoms were so negatively affected, with some species likely to have diminished silica production before the end of this century," says Dr Petrou.

In the context of global climate change, these findings are important because they reveal that OA can notonly alter phytoplankton community composition, but also reduce diatom ballast (sinking ability), adds SCU based Kai Schulz. Loss of silica production and thus ballast could mean that fewer diatoms end up on the ocean floor, resulting in less atmospheric CO2 being removed from our atmosphere and transported for storage in the deep ocean.

"The only genuine way to circumvent this outcome, is to cut our greenhouse gas emissions and limit the acidification of our oceans," the researchers say.

###

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

URL查看原文
来源平台EurekAlert! - Earth Science
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/135505
专题地球科学
推荐引用方式
GB/T 7714
admin. New threat from ocean acidification emerges in the Southern Ocean. 2019.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。