GSTDTAP  > 地球科学
DOI10.1016/j.atmosres.2017.12.006
Combination of support vector machine, artificial neural network and random forest for improving the classification of convective and stratiform rain using spectral features of SEVIRI data
Lazri, Mourad; Ameur, Soltane
2018-05-01
发表期刊ATMOSPHERIC RESEARCH
ISSN0169-8095
EISSN1873-2895
出版年2018
卷号203页码:118-129
文章类型Article
语种英语
国家Algeria
英文摘要

A model combining three classifiers, namely Support vector machine, Artificial neural network and Random forest (SAR) is designed for improving the classification of convective and stratiform rain. This model (SAR model) has been trained and then tested on a datasets derived from MSG-SEVIRI (Meteosat Second Generation Spinning Enhanced Visible and Infrared Imager). Well-classified, mid-classified and misclassified pixels are determined from the combination of three classifiers. Mid-classified and misclassified pixels that are considered unreliable pixels are reclassified by using a novel training of the developed scheme. In this novel training, only the input data corresponding to the pixels in question to are used. This whole process is repeated a second time and applied to mid-classified and misclassified pixels separately. Learning and validation of the developed scheme are realized against co-located data observed by ground radar. The developed scheme outperformed different classifiers used separately and reached 97.40% of overall accuracy of classification.


英文关键词Support vector machine Network neural Random forest MSG-SEVIRI Radar image Classification
领域地球科学
收录类别SCI-E
WOS记录号WOS:000426226400011
WOS关键词SPLIT-WINDOW ; CLOUD ; PRECIPITATION
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/15256
专题地球科学
作者单位Univ Mouloud MAMMERI Tizi Ouzou, Lab LAMPA, Lab Anal & Modelisat Phenomenes Aleatoires, Tizi Ouzou, Algeria
推荐引用方式
GB/T 7714
Lazri, Mourad,Ameur, Soltane. Combination of support vector machine, artificial neural network and random forest for improving the classification of convective and stratiform rain using spectral features of SEVIRI data[J]. ATMOSPHERIC RESEARCH,2018,203:118-129.
APA Lazri, Mourad,&Ameur, Soltane.(2018).Combination of support vector machine, artificial neural network and random forest for improving the classification of convective and stratiform rain using spectral features of SEVIRI data.ATMOSPHERIC RESEARCH,203,118-129.
MLA Lazri, Mourad,et al."Combination of support vector machine, artificial neural network and random forest for improving the classification of convective and stratiform rain using spectral features of SEVIRI data".ATMOSPHERIC RESEARCH 203(2018):118-129.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lazri, Mourad]的文章
[Ameur, Soltane]的文章
百度学术
百度学术中相似的文章
[Lazri, Mourad]的文章
[Ameur, Soltane]的文章
必应学术
必应学术中相似的文章
[Lazri, Mourad]的文章
[Ameur, Soltane]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。