GSTDTAP  > 气候变化
DOI10.3354/cr01545
Prediction of climate variables by comparing the k-nearest neighbor method and MIROC5 outputs in an arid environment
Yazd, Hamid Reza Golkar Hamzee1; Salehnia, Nasrin2; Kolsoumi, Sohrab2; Hoogenboom, Gerrit3
2019
发表期刊CLIMATE RESEARCH
ISSN0936-577X
EISSN1616-1572
出版年2019
卷号77期号:2页码:99-114
文章类型Article
语种英语
国家Iran; USA
英文摘要

The goal of this study was to compare the ability of the k-nearest neighbors (k-NN) approach and the downscaled output from the MIROC5 model for generating daily precipitation (mm) and daily maximum and minimum temperature (T-max and T-min; degrees C) for an arid environment. For this study, data from the easternmost province of Iran, South Khorasan, were used for the period 1986 to 2015. We also used an ensemble method to decrease the uncertainty of the k-NN approach. Although, based on an initial evaluation, MIROC5 had better results, we also used the output results of k-NN alongside the MIROC5 data to generate future weather data for the period 2018 to 2047. Nash-Sutcliffe efficiency (NSE) between MIROC5 estimates and observed monthly T-max ranged from 0.86 to 0.92, and from 0.89 to 0.93 for T ram over the evaluation period (2006-2015). k-NN performed less well, with NSE between k-NN estimates and observed T max ranging from 0.54 to 0.64, and from 0.75 to 0.78 for T-min. The MIROC5 simulated precipitation was close to observed historical values (-0.06 < NSE < 0.07), but the k-NN simulated precipitation was less accurate (-0.36 < NSE < -0.14). For the studied arid regions, the k-NN precipitation results compared poorly to the MIROC5 downscaling results. MIROC5 predicts increases in monthly T-min and T(max )in summer and autumn and decreases in winter and spring, and decreases in winter monthly precipitation under RCP4.5 over the 2018-2047 period of this study. This study showed that the k-NN method should be expected to have inaccurate results for generating future data in comparison to the outputs of the MIROC5 model for arid environments.


英文关键词RCP4.5 Statistical downscaling Delta method Ensemble LARS-WG Lut Desert
领域气候变化
收录类别SCI-E
WOS记录号WOS:000482741500002
WOS关键词WEATHER GENERATOR ; RIVER-BASIN ; STATISTICAL-METHODS ; DOWNSCALING METHODS ; DAILY PRECIPITATION ; IMPACT ASSESSMENT ; CHANGE SCENARIOS ; MODEL ; SIMULATION ; TEMPERATURE
WOS类目Environmental Sciences ; Meteorology & Atmospheric Sciences
WOS研究方向Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/181251
专题气候变化
作者单位1.Islamic Azad Univ, Ferdows Branch, POB 9771-848664, Ferdows, Iran;
2.Ferdowsi Univ Mashhad, POB 9177-949207, Mashhad, Razavi Khorasan, Iran;
3.Univ Florida, Inst Sustainable Food Syst, POB 110570, Gainesville, FL USA
推荐引用方式
GB/T 7714
Yazd, Hamid Reza Golkar Hamzee,Salehnia, Nasrin,Kolsoumi, Sohrab,et al. Prediction of climate variables by comparing the k-nearest neighbor method and MIROC5 outputs in an arid environment[J]. CLIMATE RESEARCH,2019,77(2):99-114.
APA Yazd, Hamid Reza Golkar Hamzee,Salehnia, Nasrin,Kolsoumi, Sohrab,&Hoogenboom, Gerrit.(2019).Prediction of climate variables by comparing the k-nearest neighbor method and MIROC5 outputs in an arid environment.CLIMATE RESEARCH,77(2),99-114.
MLA Yazd, Hamid Reza Golkar Hamzee,et al."Prediction of climate variables by comparing the k-nearest neighbor method and MIROC5 outputs in an arid environment".CLIMATE RESEARCH 77.2(2019):99-114.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yazd, Hamid Reza Golkar Hamzee]的文章
[Salehnia, Nasrin]的文章
[Kolsoumi, Sohrab]的文章
百度学术
百度学术中相似的文章
[Yazd, Hamid Reza Golkar Hamzee]的文章
[Salehnia, Nasrin]的文章
[Kolsoumi, Sohrab]的文章
必应学术
必应学术中相似的文章
[Yazd, Hamid Reza Golkar Hamzee]的文章
[Salehnia, Nasrin]的文章
[Kolsoumi, Sohrab]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。