GSTDTAP  > 资源环境科学
DOI10.1029/2018WR023400
Particle Filter Data Assimilation of Monthly Snow Depth Observations Improves Estimation of Snow Density and SWE
Smyth, Eric J.1; Raleigh, Mark S.1,2,3; Small, Eric E.1
2019-02-01
发表期刊WATER RESOURCES RESEARCH
ISSN0043-1397
EISSN1944-7973
出版年2019
卷号55期号:2页码:1296-1311
文章类型Article
语种英语
国家USA
英文摘要

Snow depth observations and modeled snow density can be combined to calculate snow water equivalent (SWE). In this approach, SWE uncertainty is dominated by snow density uncertainty, which depends on meteorological data quality and process representation (e.g., compaction) in models. We test whether assimilating snow depth observations with the particle filter can improve modeled snow density, thus improving SWE estimated from intermittent depth observations. We model snowpack at Mammoth Mountain (California) over water years 2013-2016, assuming monthly snow depth data (e.g., sampling intervals relevant to lidar or manual surveys) for assimilation, and validate against observed SWE and density. The particle filter reduced density and SWE root-mean-square error by 27% and 28% relative to open loop simulations when using high-quality, point location forcing. Assimilation gains were greater (35% and 51% reduction in density and SWE root-mean-square error) when using coarse-resolution North American Land Data Assimilation System phase 2 meteorology. Ensembles created with both meteorological and compaction perturbations led to the greatest model improvements. Because modeled depth and density were both generally lower than observations, assimilation favored particles with higher precipitation and thus more overburden compaction. This moved depth and density (therefore SWE) closer to observations. In contrast, ensemble generation that varied only compaction parameters degraded performance. These results were supported by synthetic experiments with prescribed error sources. Thus, assimilation of snow depth data from lidar or other techniques can likely improve snow density and SWE derived at the basin scale. However, supplementary in situ observations are valuable to identify primary error sources in simulated snow depth and density.


英文关键词SWE lidar particle filter snow depth snow density data assimilation
领域资源环境
收录类别SCI-E
WOS记录号WOS:000461858900023
WOS关键词WATER EQUIVALENT ; TEMPORAL VARIABILITY ; ENERGY EXCHANGE ; BATCH SMOOTHER ; SCANNING LIDAR ; SIERRA-NEVADA ; SOIL-MOISTURE ; ALPINE REGION ; SURFACE ; MOUNTAIN
WOS类目Environmental Sciences ; Limnology ; Water Resources
WOS研究方向Environmental Sciences & Ecology ; Marine & Freshwater Biology ; Water Resources
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/181294
专题资源环境科学
作者单位1.Univ Colorado, Dept Geol Sci, Boulder, CO 80309 USA;
2.Univ Colorado, CIRES, Boulder, CO 80309 USA;
3.Univ Colorado, NSIDC, Boulder, CO 80309 USA
推荐引用方式
GB/T 7714
Smyth, Eric J.,Raleigh, Mark S.,Small, Eric E.. Particle Filter Data Assimilation of Monthly Snow Depth Observations Improves Estimation of Snow Density and SWE[J]. WATER RESOURCES RESEARCH,2019,55(2):1296-1311.
APA Smyth, Eric J.,Raleigh, Mark S.,&Small, Eric E..(2019).Particle Filter Data Assimilation of Monthly Snow Depth Observations Improves Estimation of Snow Density and SWE.WATER RESOURCES RESEARCH,55(2),1296-1311.
MLA Smyth, Eric J.,et al."Particle Filter Data Assimilation of Monthly Snow Depth Observations Improves Estimation of Snow Density and SWE".WATER RESOURCES RESEARCH 55.2(2019):1296-1311.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Smyth, Eric J.]的文章
[Raleigh, Mark S.]的文章
[Small, Eric E.]的文章
百度学术
百度学术中相似的文章
[Smyth, Eric J.]的文章
[Raleigh, Mark S.]的文章
[Small, Eric E.]的文章
必应学术
必应学术中相似的文章
[Smyth, Eric J.]的文章
[Raleigh, Mark S.]的文章
[Small, Eric E.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。