GSTDTAP  > 资源环境科学
DOI10.1029/2018WR023954
A Reduced Generalized Multiscale Basis Method for Parametrized Groundwater Flow Problems in Heterogeneous Porous Media
He, Xinguang1,2; Li, Qiuqi3; Jiang, Lijian4
2019-03-01
发表期刊WATER RESOURCES RESEARCH
ISSN0043-1397
EISSN1944-7973
出版年2019
卷号55期号:3页码:2390-2406
文章类型Article
语种英语
国家Peoples R China
英文摘要

In this paper, we develop a reduced generalized multiscale basis method for efficiently solving the parametrized groundwater flow problems in heterogeneous porous media. Recently proposed generalized multiscale finite element (GMsFE) method is one of the accurate and efficient methods to solve the multiscale problems on a coarse grid. However, the GMsFE basis functions usually depend on the random parameters in the parametrized model, which substantially impacts on the computation efficiency when the parametrized equation needs to be solved many times for many instances of parameters. To enhance computation efficiency, we construct reduced generalized multiscale basis functions independent of parameters from the high-dimensional GMsFE space and generate a reduced-order multiscale model by projecting the parameterized flow governing equation onto the low-dimensional reduced GMsFE space. Then, in order to improve the online computation of reduced-order model, we apply a matrix discrete empirical interpolation method to affinely decompose the nonaffine parametrized systems arising from the discretization of governing equation. Finally, a few numerical experiments are carried out for the parametrized transient flow problems in heterogeneous porous media to illustrate the efficiency and accuracy of the proposed model reduction method. The results show that the proposed reduced generalized multiscale basis method can significantly improve computation efficiency while maintaining comparative accuracy for the groundwater flow problems by selecting a suitable coarse mesh size and an optimal number of reduced GMsFE basis functions at each of coarse nodes.


英文关键词reduced-order model full-order model multiscale finite element method empirical interpolation method groundwater flow problem heterogeneous porous media
领域资源环境
收录类别SCI-E
WOS记录号WOS:000464660000032
WOS关键词FINITE-ELEMENT METHODS ; POSTERIORI ERROR ESTIMATION ; NONLINEAR MODEL-REDUCTION ; EQUATIONS ; BOUNDS
WOS类目Environmental Sciences ; Limnology ; Water Resources
WOS研究方向Environmental Sciences & Ecology ; Marine & Freshwater Biology ; Water Resources
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/181581
专题资源环境科学
作者单位1.Hunan Normal Univ, Coll Resources & Environm Sci, Changsha, Hunan, Peoples R China;
2.Key Lab Geospatial Big Data Min & Applicat, Changsha, Hunan, Peoples R China;
3.Peking Univ, Sch Math Sci, Beijing, Peoples R China;
4.Tongji Univ, Sch Math, Shanghai, Peoples R China
推荐引用方式
GB/T 7714
He, Xinguang,Li, Qiuqi,Jiang, Lijian. A Reduced Generalized Multiscale Basis Method for Parametrized Groundwater Flow Problems in Heterogeneous Porous Media[J]. WATER RESOURCES RESEARCH,2019,55(3):2390-2406.
APA He, Xinguang,Li, Qiuqi,&Jiang, Lijian.(2019).A Reduced Generalized Multiscale Basis Method for Parametrized Groundwater Flow Problems in Heterogeneous Porous Media.WATER RESOURCES RESEARCH,55(3),2390-2406.
MLA He, Xinguang,et al."A Reduced Generalized Multiscale Basis Method for Parametrized Groundwater Flow Problems in Heterogeneous Porous Media".WATER RESOURCES RESEARCH 55.3(2019):2390-2406.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[He, Xinguang]的文章
[Li, Qiuqi]的文章
[Jiang, Lijian]的文章
百度学术
百度学术中相似的文章
[He, Xinguang]的文章
[Li, Qiuqi]的文章
[Jiang, Lijian]的文章
必应学术
必应学术中相似的文章
[He, Xinguang]的文章
[Li, Qiuqi]的文章
[Jiang, Lijian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。