GSTDTAP  > 气候变化
DOI10.1175/JCLI-D-18-0590.1
First Effort at Constructing a High-Density Photosynthetically Active Radiation Dataset during 1961-2014 in China
Qin, Wenmin1,2; Wang, Lunche1,2; Zhang, Ming1,2; Niu, Zigeng1,2; Luo, Ming3,4; Lin, Aiwen5; Hu, Bo6
2019-05-01
发表期刊JOURNAL OF CLIMATE
ISSN0894-8755
EISSN1520-0442
出版年2019
卷号32期号:10页码:2761-2780
文章类型Article
语种英语
国家Peoples R China
英文摘要

Photosynthetically active radiation (PAR) is a key factor for vegetation growth and climate change. Different types of PAR models, including four physically based models and eight artificial intelligence (AI) models, were proposed for predicting daily PAR. Multiyear daily meteorological parameters observed at 29 Chinese Ecosystem Research Network (CERN) stations and 2474 Chinese Meteorological Administration (CMA) stations across China were used for testing, validating, and comparing the above models. The optimized back propagation (BP) neural network based on the mind evolutionary algorithm (MEA-BP) was the model with highest accuracy and strongest robustness. The correlation coefficient R, mean absolute bias error (MAE), and RMSE for MEA-BP were 0.986, 0.302 MJ m(-2) day(-1) and 0.393 MJ m(-2) day(-1), respectively. Then, a high-density PAR dataset was constructed for the first time using the MEA-BP model at 2474 CMA stations of China. A quality control process and homogenization test (using RHtestsV4) for the PAR dataset were further conducted. This high-density PAR dataset would benefit many climate and ecological studies.


英文关键词Atmosphere Asia Radiative forcing Shortwave radiation Data processing Databases
领域气候变化
收录类别SCI-E
WOS记录号WOS:000465856200002
WOS关键词EXTREME LEARNING-MACHINE ; SOLAR-RADIATION ; MODEL ; GEOSTATIONARY ; PREDICTION ; REGRESSION ; LAND ; PAR
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/183001
专题气候变化
作者单位1.China Univ Geosci, Hubei Key Lab Crit Zone Evolut, Sch Earth Sci, Wuhan, Hubei, Peoples R China;
2.China Univ Geosci, Sch Geog & Informat Engn, Wuhan, Hubei, Peoples R China;
3.Sun Yat Sen Univ, Sch Geog & Planning, Guangzhou, Guangdong, Peoples R China;
4.Sun Yat Sen Univ, Guangdong Key Lab Urbanizat & Geosimulat, Guangzhou, Guangdong, Peoples R China;
5.Wuhan Univ, Sch Resource & Environm Sci, Wuhan, Hubei, Peoples R China;
6.Chinese Acad Sci, Inst Atmospher Phys, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Qin, Wenmin,Wang, Lunche,Zhang, Ming,et al. First Effort at Constructing a High-Density Photosynthetically Active Radiation Dataset during 1961-2014 in China[J]. JOURNAL OF CLIMATE,2019,32(10):2761-2780.
APA Qin, Wenmin.,Wang, Lunche.,Zhang, Ming.,Niu, Zigeng.,Luo, Ming.,...&Hu, Bo.(2019).First Effort at Constructing a High-Density Photosynthetically Active Radiation Dataset during 1961-2014 in China.JOURNAL OF CLIMATE,32(10),2761-2780.
MLA Qin, Wenmin,et al."First Effort at Constructing a High-Density Photosynthetically Active Radiation Dataset during 1961-2014 in China".JOURNAL OF CLIMATE 32.10(2019):2761-2780.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Qin, Wenmin]的文章
[Wang, Lunche]的文章
[Zhang, Ming]的文章
百度学术
百度学术中相似的文章
[Qin, Wenmin]的文章
[Wang, Lunche]的文章
[Zhang, Ming]的文章
必应学术
必应学术中相似的文章
[Qin, Wenmin]的文章
[Wang, Lunche]的文章
[Zhang, Ming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。