GSTDTAP  > 气候变化
DOI10.1029/2019GL083189
Grid- Versus Station-Based Postprocessing of Ensemble Temperature Forecasts
Feldmann, Kira1; Richardson, David S.2; Gneiting, Tilmann3,4
2019-07-16
发表期刊GEOPHYSICAL RESEARCH LETTERS
ISSN0094-8276
EISSN1944-8007
出版年2019
卷号46期号:13页码:7744-7751
文章类型Article
语种英语
国家Germany; England
英文摘要

Statistical postprocessing aims to improve ensemble model output by delivering calibrated predictive distributions. To train and assess these methods, it is crucial to choose appropriate verification data. Reanalyses cover the entire globe on the same spatiotemporal scale as the forecasting model, while observation stations are scattered across planet Earth. Here we compare the benefits of postprocessing with gridded analyses against postprocessing at observation sites. In a case study, we apply local Ensemble Model Output Statistics to 2-m temperature forecasts by the European Centre for Medium-Range-Weather Forecasts ensemble system. Our evaluation period ranges from November 2016 to December 2017. Postprocessing yields improvements over the raw ensemble at all lead times. The relative improvement achieved by postprocessing is greater when trained and verified against station observations.


Plain Language Summary To this day, weather forecasts are uncertain and subject to error. Statistical postprocessing aims to remove systematic deficiencies from the output of numerical weather prediction models. To apply these statistical methods, training and reference data are required. Weather observation sites are scattered across planet Earth. An alternative source of training and reference data is provided by so-called analyses, which combine weather observations with past forecasts to provide gridded pseudo-data with full global coverage. In this study we consider forecasts of surface temperature from the European Centre for Medium-Range Weather Forecasts. We find that the benefits of postprocessing are greater when it is performed directly on observational data, as opposed to using gridded analyses. In both cases, statistical postprocessing yields improved temperature forecasts at lead times from a single day to more than 2 weeks ahead.


领域气候变化
收录类别SCI-E
WOS记录号WOS:000476960100076
WOS关键词NONHOMOGENEOUS REGRESSION ; HYPOTHESIS TESTS ; PREDICTION ; ECMWF ; SKILL ; RAW
WOS类目Geosciences, Multidisciplinary
WOS研究方向Geology
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/185095
专题气候变化
作者单位1.Heidelberg Univ, Fac Math & Comp Sci, Heidelberg, Germany;
2.European Ctr Medium Range Weather Forecasts, Reading, Berks, England;
3.Heidelberg Inst Theoret Studies, Heidelberg, Germany;
4.KIT, Karlsruhe, Germany
推荐引用方式
GB/T 7714
Feldmann, Kira,Richardson, David S.,Gneiting, Tilmann. Grid- Versus Station-Based Postprocessing of Ensemble Temperature Forecasts[J]. GEOPHYSICAL RESEARCH LETTERS,2019,46(13):7744-7751.
APA Feldmann, Kira,Richardson, David S.,&Gneiting, Tilmann.(2019).Grid- Versus Station-Based Postprocessing of Ensemble Temperature Forecasts.GEOPHYSICAL RESEARCH LETTERS,46(13),7744-7751.
MLA Feldmann, Kira,et al."Grid- Versus Station-Based Postprocessing of Ensemble Temperature Forecasts".GEOPHYSICAL RESEARCH LETTERS 46.13(2019):7744-7751.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Feldmann, Kira]的文章
[Richardson, David S.]的文章
[Gneiting, Tilmann]的文章
百度学术
百度学术中相似的文章
[Feldmann, Kira]的文章
[Richardson, David S.]的文章
[Gneiting, Tilmann]的文章
必应学术
必应学术中相似的文章
[Feldmann, Kira]的文章
[Richardson, David S.]的文章
[Gneiting, Tilmann]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。