GSTDTAP  > 资源环境科学
DOI10.1016/j.landurbplan.2019.05.012
Using GIS-linked Bayesian Belief Networks as a tool for modelling urban biodiversity
Grafius, Darren R.1,2; Corstanje, Ron2; Warren, Philip H.1; Evans, Karl L.1; Norton, Briony A.1; Siriwardena, Gavin M.3; Pescott, Oliver L.4; Plummer, Kate E.3,5; Mears, Meghann1; Zawadzka, Joanna2; Richards, J. Paul1; Harris, Jim A.2
2019-09-01
发表期刊LANDSCAPE AND URBAN PLANNING
ISSN0169-2046
EISSN1872-6062
出版年2019
卷号189页码:382-395
文章类型Article
语种英语
国家England
英文摘要

The ability to predict spatial variation in biodiversity is a long-standing but elusive objective of landscape ecology. It depends on a detailed understanding of relationships between landscape and patch structure and taxonomic richness, and accurate spatial modelling. Complex heterogeneous environments such as cities pose particular challenges, as well as heightened relevance, given the increasing rate of urbanisation globally. Here we use a GIS-linked Bayesian Belief Network approach to test whether landscape and patch structural characteristics (including vegetation height, green-space patch size and their connectivity) drive measured taxonomic richness of numerous invertebrate, plant, and avian groups. We find that modelled richness is typically higher in larger and better-connected green-spaces with taller vegetation, indicative of more complex vegetation structure and consistent with the principle of 'bigger, better, and more joined up'. Assessing the relative importance of these variables indicates that vegetation height is the most influential in determining richness for a majority of taxa. There is variation, however, between taxonomic groups in the relationships between richness and landscape structural characteristics, and the sensitivity of these relationships to particular predictors. Consequently, despite some broad commonalities, there will be trade-offs between different taxonomic groups when designing urban landscapes to maximise biodiversity. This research demonstrates the feasibility of using a GIS-coupled Bayesian Belief Network approach to model biodiversity at fine spatial scales in complex landscapes where current data and appropriate modelling approaches are lacking, and our findings have important implications for ecologists, conservationists and planners.


英文关键词BBN Bird Invertebrate Fragmentation Model Species richness
领域资源环境
收录类别SCI-E ; SSCI
WOS记录号WOS:000474330500034
WOS关键词SPECIES RICHNESS ; VEGETATION STRUCTURE ; CIRCUIT-THEORY ; ECOLOGY ; CITIES ; BIRDS ; CONNECTIVITY ; LANDSCAPE ; COVER ; ALIEN
WOS类目Ecology ; Environmental Studies ; Geography ; Geography, Physical ; Regional & Urban Planning ; Urban Studies
WOS研究方向Environmental Sciences & Ecology ; Geography ; Physical Geography ; Public Administration ; Urban Studies
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/186837
专题资源环境科学
作者单位1.Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England;
2.Cranfield Univ, Sch Water Energy & Environm, Cranfield MK43 0AL, Beds, England;
3.British Trust Ornithol, Thetford IP24 2PU, Norfolk, England;
4.Ctr Ecol & Hydrol, Wallingford OX10 8BB, Oxon, England;
5.Univ Exeter, Coll Life & Environm Sci, Ctr Ecol & Conservat, Penryn Campus, Penryn TR10 9FE, Cornwall, England
推荐引用方式
GB/T 7714
Grafius, Darren R.,Corstanje, Ron,Warren, Philip H.,et al. Using GIS-linked Bayesian Belief Networks as a tool for modelling urban biodiversity[J]. LANDSCAPE AND URBAN PLANNING,2019,189:382-395.
APA Grafius, Darren R..,Corstanje, Ron.,Warren, Philip H..,Evans, Karl L..,Norton, Briony A..,...&Harris, Jim A..(2019).Using GIS-linked Bayesian Belief Networks as a tool for modelling urban biodiversity.LANDSCAPE AND URBAN PLANNING,189,382-395.
MLA Grafius, Darren R.,et al."Using GIS-linked Bayesian Belief Networks as a tool for modelling urban biodiversity".LANDSCAPE AND URBAN PLANNING 189(2019):382-395.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Grafius, Darren R.]的文章
[Corstanje, Ron]的文章
[Warren, Philip H.]的文章
百度学术
百度学术中相似的文章
[Grafius, Darren R.]的文章
[Corstanje, Ron]的文章
[Warren, Philip H.]的文章
必应学术
必应学术中相似的文章
[Grafius, Darren R.]的文章
[Corstanje, Ron]的文章
[Warren, Philip H.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。