Global S&T Development Trend Analysis Platform of Resources and Environment
DOI | 10.5194/acp-19-11123-2019 |
Summertime surface PM1 aerosol composition and size by source region at the Lampedusa island in the central Mediterranean Sea | |
Mallet, Marc D.1; 39;Anna, Barbara2 | |
2019-09-03 | |
发表期刊 | ATMOSPHERIC CHEMISTRY AND PHYSICS
![]() |
ISSN | 1680-7316 |
EISSN | 1680-7324 |
出版年 | 2019 |
卷号 | 19期号:17页码:11123-11142 |
文章类型 | Article |
语种 | 英语 |
国家 | France; Italy; Cyprus |
英文摘要 | Measurements of aerosol composition and size distributions were taken during the summer of 2013 at the remote island of Lampedusa in the southern central Mediterranean Sea. These measurements were part of the ChArMEx/ADRIMED (Chemistry and Aerosol Mediterranean Experiment/Aerosol Direct Radiative Forcing on the Mediterranean Climate) framework and took place during Special Observation Period 1a (SOP-1a) from 11 June to 5 July 2013. From compact time-of-flight aerosol mass spectrometer (cToF-AMS) measurements in the size range below 1 mu m in aerodynamic diameter (PM1), particles were predominately comprised of ammonium and sulfate. On average, ammonium sulfate contributed 63% to the non-refractory PM1 mass, followed by organics (33 %). The organic aerosol was generally very highly oxidized (f(44) values were typically between 0.25 and 0.26). The contribution of ammonium sulfate was generally higher than organic aerosol in comparison to measurements taken in the western Mediterranean but is consistent with studies undertaken in the eastern basin. Source apportionment of organics using a statistical (positive matrix factorization) model revealed four factors: a hydrocarbon-like organic aerosol (HOA), a methanesulfonic-acid-related oxygenated organic aerosol (MSA-OOA), a more oxidized oxygenated organic aerosol (MO-OOA) and a less oxidized oxygenated organic aerosol (LO-OOA). The MO-OOA was the dominant factor for most of the campaign (53% of the PM1 OA mass). It was well correlated with SO42-, highly oxidized and generally more dominant during easterly air masses originating from the eastern Mediterranean and central Europe. The LO-OOA factor had a very similar composition to the MO-OOA factor but was more prevalent during westerly winds, with air masses originating from the Atlantic Ocean, the western Mediterranean and at high altitudes over France and Spain from mistral winds. The MSA-OOA factor contributed an average 12% to the PM1 OA and was more dominant during the mistral winds. The HOA, representing observed primary organic aerosol, only contributed 8% of the average PM1 OA during the campaign. Even though Lampedusa is one of the most remote sites in the Mediterranean, PM1 concentrations (10 +/- 5 mu g m(-3)) were comparable to those observed in coastal cities and sites closer to continental Europe. Cleaner conditions corresponded to higher wind speeds. Nucleation and growth of new aerosol particles was observed during periods of north-westerly winds. From a climatology analysis from 1999 to 2012, these periods were much more prevalent during the measurement campaign than during the preceding 13 years. These results support previous findings that highlight the importance of different large-scale synoptic conditions in determining the regional and local aerosol composition and oxidation and also suggest that a non-polluted surface atmosphere over the Mediterranean is rare. |
领域 | 地球科学 |
收录类别 | SCI-E |
WOS记录号 | WOS:000484161200003 |
WOS关键词 | LONG-RANGE-TRANSPORT ; POSITIVE MATRIX FACTORIZATION ; OXYGENATED ORGANIC AEROSOLS ; AIRUSE-LIFE PLUS ; MASS-SPECTROMETER ; SOURCE APPORTIONMENT ; CHEMICAL-COMPOSITION ; OPTICAL-PROPERTIES ; PARTICLE FORMATION ; BOUNDARY-LAYER |
WOS类目 | Environmental Sciences ; Meteorology & Atmospheric Sciences |
WOS研究方向 | Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.173/C666/handle/2XK7JSWQ/186928 |
专题 | 地球科学 |
作者单位 | 1.Univ Paris, UPEC, IPSL, LISA,CNRS,UMR7583, Creteil, France; 2.Univ Lyon1, UMR 5652, CNRS, IRCELYON, Lyon, France; 3.CNES, Toulouse, France; 4.Aix Marseille Univ, UMR 7376, CNRS, LCE, Marseille, France; 5.Univ Genoa, Dept Phys, Genoa, Italy; 6.Univ Genoa, INFN, Genoa, Italy; 7.ARPAL Phys Agents & Air Pollut Sect, La Spezia, Italy; 8.ENEA, Lab Observat & Anal Earth & Climate, Rome, Italy; 9.Cyprus Inst, Energy Environm & Water Res Ctr, Nicosia, Cyprus; 10.Bruker, Lyon, France; 11.ARPAL CFMI PC, Genoa, Italy |
推荐引用方式 GB/T 7714 | Mallet, Marc D.,39;Anna, Barbara. Summertime surface PM1 aerosol composition and size by source region at the Lampedusa island in the central Mediterranean Sea[J]. ATMOSPHERIC CHEMISTRY AND PHYSICS,2019,19(17):11123-11142. |
APA | Mallet, Marc D.,&39;Anna, Barbara.(2019).Summertime surface PM1 aerosol composition and size by source region at the Lampedusa island in the central Mediterranean Sea.ATMOSPHERIC CHEMISTRY AND PHYSICS,19(17),11123-11142. |
MLA | Mallet, Marc D.,et al."Summertime surface PM1 aerosol composition and size by source region at the Lampedusa island in the central Mediterranean Sea".ATMOSPHERIC CHEMISTRY AND PHYSICS 19.17(2019):11123-11142. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论