GSTDTAP  > 地球科学
DOI10.5194/acp-19-12007-2019
Diagnosing spatial error structures in CO2 mole fractions and XCO2 column mole fractions from atmospheric transport
Lauvaux, Thomas1,4; Diaz-Isaac, Liza I.1,5; Bocquet, Marc2; Bousserez, Nicolas3,6
2019-09-26
发表期刊ATMOSPHERIC CHEMISTRY AND PHYSICS
ISSN1680-7316
EISSN1680-7324
出版年2019
卷号19期号:18页码:12007-12024
文章类型Article
语种英语
国家USA; France; England
英文摘要

Atmospheric inversions inform us about the magnitude and variations of greenhouse gas (GHG) sources and sinks from global to local scales. Deployment of observing systems such as spaceborne sensors and ground-based instruments distributed around the globe has started to offer an unprecedented amount of information to estimate surface exchanges of GHG at finer spatial and temporal scales. However, all inversion methods still rely on imperfect atmospheric transport models whose error structures directly affect the inverse estimates of GHG fluxes. The impact of spatial error structures on the retrieved fluxes increase concurrently with the density of the available measurements. In this study, we diagnose the spatial structures due to transport model errors affecting modeled in situ carbon dioxide (CO2) mole fractions and total-column dry air mole fractions of CO2 (XCO2). We implement a cost-effective filtering technique recently developed in the meteorological data assimilation community to describe spatial error structures using a small-size ensemble. This technique can enable ensemble-based error analysis for multiyear inversions of sources and sinks. The removal of noisy structures due to sampling errors in our small-size ensembles is evaluated by comparison with larger-size ensembles. A second filtering approach for error covariances is proposed (Wiener filter), producing similar results over the 1-month simulation period compared to a Schur filter. Based on a comparison to a reference 25-member calibrated ensemble, we demonstrate that error variances and spatial error correlation structures are recoverable from small-size ensembles of about 8 to 10 members, improving the representation of transport errors in mesoscale inversions of CO2 fluxes. Moreover, error variances of in situ near-surface and free-tropospheric CO2 mole fractions differ significantly from total-column XCO2 error variances. We conclude that error variances for remote-sensing observations need to be quantified independently of in situ CO2 mole fractions due to the complexity of spatial error structures at different altitudes. However, we show the potential use of meteorological error structures such as the mean horizontal wind speed, directly available from ensemble prediction systems, to approximate spatial error correlations of in situ CO2 mole fractions, with similarities in seasonal variations and characteristic error length scales.


领域地球科学
收录类别SCI-E
WOS记录号WOS:000488023500002
WOS关键词ENSEMBLE KALMAN FILTER ; DATA ASSIMILATION ; SAMPLE COVARIANCES ; METHANE EMISSIONS ; GROWTH-RATE ; EL-NINO ; INVERSIONS ; UNCERTAINTY ; BUDGET ; SINKS
WOS类目Environmental Sciences ; Meteorology & Atmospheric Sciences
WOS研究方向Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/187143
专题地球科学
作者单位1.Penn State Univ, Dept Meteorol & Atmospher Sci, University Pk, PA 16802 USA;
2.Univ Paris Est, CEREA, Joint Lab, Ecole Ponts ParisTech & EDF R&D, Champs Sur Marne, France;
3.Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA;
4.Univ Paris Saclay, CNRS, Lab Sci Climat & Environm, CEA,UVSQ IPSL, F-91191 Gif Sur Yvette, France;
5.Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA;
6.European Ctr Medium Range Weather Forecasts, Reading, Berks, England
推荐引用方式
GB/T 7714
Lauvaux, Thomas,Diaz-Isaac, Liza I.,Bocquet, Marc,et al. Diagnosing spatial error structures in CO2 mole fractions and XCO2 column mole fractions from atmospheric transport[J]. ATMOSPHERIC CHEMISTRY AND PHYSICS,2019,19(18):12007-12024.
APA Lauvaux, Thomas,Diaz-Isaac, Liza I.,Bocquet, Marc,&Bousserez, Nicolas.(2019).Diagnosing spatial error structures in CO2 mole fractions and XCO2 column mole fractions from atmospheric transport.ATMOSPHERIC CHEMISTRY AND PHYSICS,19(18),12007-12024.
MLA Lauvaux, Thomas,et al."Diagnosing spatial error structures in CO2 mole fractions and XCO2 column mole fractions from atmospheric transport".ATMOSPHERIC CHEMISTRY AND PHYSICS 19.18(2019):12007-12024.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lauvaux, Thomas]的文章
[Diaz-Isaac, Liza I.]的文章
[Bocquet, Marc]的文章
百度学术
百度学术中相似的文章
[Lauvaux, Thomas]的文章
[Diaz-Isaac, Liza I.]的文章
[Bocquet, Marc]的文章
必应学术
必应学术中相似的文章
[Lauvaux, Thomas]的文章
[Diaz-Isaac, Liza I.]的文章
[Bocquet, Marc]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。