GSTDTAP  > 地球科学
DOI10.5194/acp-18-12933-2018
Spatiotemporal variability of NO2 and PM2.5 over Eastern China: observational and model analyses with a novel statistical method
Liu, Mengyao1; Lin, Jintai1; Wang, Yuchen1,2; Sun, Yang3; Zheng, Bo4; Shao, Jingyuan1; Chen, Lulu1; Zheng, Yixuan5; Chen, Jinxuan1,6; Fu, Tzung-May1; Yan, Yingying1; Zhang, Qiang4; Wu, Zhaohua7,8
2018-09-07
发表期刊ATMOSPHERIC CHEMISTRY AND PHYSICS
ISSN1680-7316
EISSN1680-7324
出版年2018
卷号18期号:17页码:12933-12952
文章类型Article
语种英语
国家Peoples R China; Japan; Germany; USA
英文摘要

Eastern China (27-41 degrees N, 110-123 degrees E) is heavily polluted by nitrogen dioxide (NO2), particulate matter with aerodynamic diameter below 2.5 mu m (PM2.5), and other air pollutants. These pollutants vary on a variety of temporal and spatial scales, with many temporal scales that are nonperiodic and nonstationary, challenging proper quantitative characterization and visualization. This study uses a newly compiled EOF-EEMD analysis visualization package to evaluate the spatiotemporal variability of ground-level NO2, PM2.5, and their associations with meteorological processes over Eastern China in fall-winter 2013. Applying the package to observed hourly pollutant data reveals a primary spatial pattern representing Eastern China synchronous variation in time, which is dominated by diurnal variability with a much weaker day-to-day signal. A secondary spatial mode, representing north-south opposing changes in time with no constant period, is characterized by wind-related dilution or a buildup of pollutants from one day to another.


We further evaluate simulations of nested GEOS-Chem v9-02 and WRF/CMAQ v5.0.1 in capturing the spatiotemporal variability of pollutants. GEOS-Chem underestimates NO2 by about 17 mu g m(-3) and PM2.5 by 35 mu g m(-3 )on average over fall-winter 2013. It reproduces the diurnal variability for both pollutants. For the day-to-day variation, GEOS-Chem reproduces the observed north-south contrasting mode for both pollutants but not the Eastern China synchronous mode (especially for NO2). The model errors are due to a first model layer too thick (about 130 m) to capture the near-surface vertical gradient, deficiencies in the nighttime nitrogen chemistry in the first layer, and missing secondary organic aerosols and anthropogenic dust. CMAQ overestimates the diurnal cycle of pollutants due to too-weak boundary layer mixing, especially in the nighttime, and overestimates NO2 by about 30 mu g m(-3) and PM2.5 by 60 mu g m(-3). For the day-to-day variability, CMAQ reproduces the observed Eastern China synchronous mode but not the north-south opposing mode of NO2. Both models capture the day-to-day variability of PM2.5 better than that of NO2. These results shed light on model improvement. The EOF-EEMD package is freely available for noncommercial uses.


领域地球科学
收录类别SCI-E
WOS记录号WOS:000444030500003
WOS关键词TROPOSPHERIC NITROGEN-DIOXIDE ; PROVINCIAL CAPITAL CITIES ; CRITERIA AIR-POLLUTANTS ; BOUNDARY-LAYER ; TIME-SERIES ; NORTH CHINA ; OZONE ; POLLUTION ; DECOMPOSITION ; CONSTRAINTS
WOS类目Environmental Sciences ; Meteorology & Atmospheric Sciences
WOS研究方向Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/19502
专题地球科学
作者单位1.Peking Univ, Sch Phys, Lab Climate & Ocean Atmosphere Studies, Dept Atmospher & Ocean Sci, Beijing 100871, Peoples R China;
2.Univ Tokyo, Earthquake Res Inst, Tokyo 1130032, Japan;
3.Chinese Acad Sci, Inst Atmospher Phys, Beijing, Peoples R China;
4.Tsinghua Univ, Ctr Earth Syst Sci, Beijing 100084, Peoples R China;
5.Tsinghua Univ, Minist Educ, Key Lab Earth Syst Modeling, Dept Earth Syst Sci, Beijing 100084, Peoples R China;
6.Max Planck Inst Biogeochem, Hans Knoll Str 10, D-07745 Jena, Germany;
7.Florida State Univ, Ctr Ocean Atmospher Predict Studies, Tallahassee, FL 32306 USA;
8.Florida State Univ, Dept Earth Ocean & Atmospher Sci, Tallahassee, FL 32306 USA
推荐引用方式
GB/T 7714
Liu, Mengyao,Lin, Jintai,Wang, Yuchen,et al. Spatiotemporal variability of NO2 and PM2.5 over Eastern China: observational and model analyses with a novel statistical method[J]. ATMOSPHERIC CHEMISTRY AND PHYSICS,2018,18(17):12933-12952.
APA Liu, Mengyao.,Lin, Jintai.,Wang, Yuchen.,Sun, Yang.,Zheng, Bo.,...&Wu, Zhaohua.(2018).Spatiotemporal variability of NO2 and PM2.5 over Eastern China: observational and model analyses with a novel statistical method.ATMOSPHERIC CHEMISTRY AND PHYSICS,18(17),12933-12952.
MLA Liu, Mengyao,et al."Spatiotemporal variability of NO2 and PM2.5 over Eastern China: observational and model analyses with a novel statistical method".ATMOSPHERIC CHEMISTRY AND PHYSICS 18.17(2018):12933-12952.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Mengyao]的文章
[Lin, Jintai]的文章
[Wang, Yuchen]的文章
百度学术
百度学术中相似的文章
[Liu, Mengyao]的文章
[Lin, Jintai]的文章
[Wang, Yuchen]的文章
必应学术
必应学术中相似的文章
[Liu, Mengyao]的文章
[Lin, Jintai]的文章
[Wang, Yuchen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。