GSTDTAP  > 气候变化
DOI10.1175/JCLI-D-17-0243.1
The Sensitivity of Daily Temperature Variability and Extremes to Dataset Choice
Gross, Mia H.1,2; Donat, Markus G.1,2; Alexander, Lisa V.1,2; Sisson, Scott A.3
2018-02-01
发表期刊JOURNAL OF CLIMATE
ISSN0894-8755
EISSN1520-0442
出版年2018
卷号31期号:4页码:1337-1359
文章类型Article
语种英语
国家Australia
英文摘要

Robust conclusions regarding changes in the temperature distribution rely on the accuracy and reliability of the input datasets used. Differences between methodologies and datasets in previous studies add uncertainty when comparing and quantifying findings. Here, the authors investigate the sensitivity of assessing global and regional temperature variability and extremes over 1980-2014 in gridded datasets of daily temperature anomalies. A gridded in situ-based dataset, Hadley Centre Global Historical Climatology Network-Daily (HadGHCND), is compared against several commonly used reanalysis products by assessing both the entire distribution and the tails of the distribution. Empirical probability distribution functions show sensitivity to the input dataset when estimating aspects such as standard deviation and skewness, with the mean showing robust results for most regions, irrespective of dataset choice. Standard deviation is especially sensitive, with larger disagreements between datasets for some regions more than others, such as Africa and the Mediterranean region, and with larger differences in minimum temperatures compared with maximum temperatures. Estimates of extreme parameters also show sensitivity to dataset choice, particularly in the lower tails and for daily minimum temperature anomalies. Comparing changes in the means and the extremes of the temperature distributions, the cold extremes in the lower tails have been warming at a faster rate than the mean of the entire distribution for much of the Northern Hemisphere extratropics, with warm extremes warming at a faster rate than the mean in some subtropical regions. These documented sensitivities call for caution when assessing changes in temperature variability and extremes, as dataset choice can have substantial effects on results.


领域气候变化
收录类别SCI-E
WOS记录号WOS:000425166600003
WOS关键词CLIMATE ; REANALYSIS ; EVENTS ; INCREASE ; MINIMUM ; MAXIMUM ; ERA-40 ; TRENDS
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/19548
专题气候变化
作者单位1.Univ New South Wales, Climate Change Res Ctr, Sydney, NSW, Australia;
2.Univ New South Wales, ARC Ctr Excellence Climate Syst Sci, Sydney, NSW, Australia;
3.Univ New South Wales, Sch Math & Stat, Sydney, NSW, Australia
推荐引用方式
GB/T 7714
Gross, Mia H.,Donat, Markus G.,Alexander, Lisa V.,et al. The Sensitivity of Daily Temperature Variability and Extremes to Dataset Choice[J]. JOURNAL OF CLIMATE,2018,31(4):1337-1359.
APA Gross, Mia H.,Donat, Markus G.,Alexander, Lisa V.,&Sisson, Scott A..(2018).The Sensitivity of Daily Temperature Variability and Extremes to Dataset Choice.JOURNAL OF CLIMATE,31(4),1337-1359.
MLA Gross, Mia H.,et al."The Sensitivity of Daily Temperature Variability and Extremes to Dataset Choice".JOURNAL OF CLIMATE 31.4(2018):1337-1359.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gross, Mia H.]的文章
[Donat, Markus G.]的文章
[Alexander, Lisa V.]的文章
百度学术
百度学术中相似的文章
[Gross, Mia H.]的文章
[Donat, Markus G.]的文章
[Alexander, Lisa V.]的文章
必应学术
必应学术中相似的文章
[Gross, Mia H.]的文章
[Donat, Markus G.]的文章
[Alexander, Lisa V.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。