GSTDTAP  > 气候变化
DOI10.1175/JCLI-D-18-0189.1
Coupled Data Assimilation and Ensemble Initialization with Application to Multiyear ENSO Prediction
O&1; 39;Kane, Terence J.2
2019-02-01
发表期刊JOURNAL OF CLIMATE
ISSN0894-8755
EISSN1520-0442
出版年2019
卷号32期号:4页码:997-1024
文章类型Article
语种英语
国家Australia
英文摘要

We develop and compare variants of coupled data assimilation (DA) systems based on ensemble optimal interpolation (EnOI) and ensemble transform Kalman filter (ETKF) methods. The assimilation system is first tested on a small paradigm model of the coupled tropical-extratropical climate system, then implemented for a coupled general circulation model (GCM). Strongly coupled DA was employed specifically to assess the impact of assimilating ocean observations [sea surface temperature (SST), sea surface height (SSH), and sea surface salinity (SSS), Argo, XBT, CTD, moorings] on the atmospheric state analysis update via the cross-domain error covariances from the coupled-model background ensemble. We examine the relationship between ensemble spread, analysis increments, and forecast skill in multiyear ENSO prediction experiments with a particular focus on the atmospheric response to tropical ocean perturbations. Initial forecast perturbations generated from bred vectors (BVs) project onto disturbances at and below the thermocline with similar structures to ETKF perturbations. BV error growth leads ENSO SST phasing by 6 months whereupon the dominant mechanism communicating tropical ocean variability to the extratropical atmosphere is via tropical convection modulating the Hadley circulation. We find that bred vectors specific to tropical Pacific thermocline variability were the most effective choices for ensemble initialization and ENSO forecasting.


英文关键词Kalman filters Lyapunov vectors Climate prediction Ensembles Climate variability
领域气候变化
收录类别SCI-E
WOS记录号WOS:000457324400002
WOS关键词TRANSFORM KALMAN FILTER ; PART I ; SQUARE-ROOT ; CLIMATE ; PACIFIC ; SYSTEM ; NCEP ; MODEL ; TELECONNECTIONS ; PERTURBATIONS
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/19697
专题气候变化
作者单位1.CSIRO Oceans & Atmosphere, Hobart, Tas, Australia;
2.Bur Meteorol, Melbourne, Vic, Australia;
3.CSIRO Oceans & Atmosphere, Aspendale, Vic, Australia
推荐引用方式
GB/T 7714
O&,39;Kane, Terence J.. Coupled Data Assimilation and Ensemble Initialization with Application to Multiyear ENSO Prediction[J]. JOURNAL OF CLIMATE,2019,32(4):997-1024.
APA O&,&39;Kane, Terence J..(2019).Coupled Data Assimilation and Ensemble Initialization with Application to Multiyear ENSO Prediction.JOURNAL OF CLIMATE,32(4),997-1024.
MLA O&,et al."Coupled Data Assimilation and Ensemble Initialization with Application to Multiyear ENSO Prediction".JOURNAL OF CLIMATE 32.4(2019):997-1024.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[O&]的文章
[39;Kane, Terence J.]的文章
百度学术
百度学术中相似的文章
[O&]的文章
[39;Kane, Terence J.]的文章
必应学术
必应学术中相似的文章
[O&]的文章
[39;Kane, Terence J.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。