Global S&T Development Trend Analysis Platform of Resources and Environment
DOI | 10.1126/science.aao4408 |
Improving refugee integration through data-driven algorithmic assignment | |
Bansak, Kirk1,2,3; Ferwerda, Jeremy2,3,4; Hainmueller, Jens1,2,3,5; Dillon, Andrea2,3; Hangartner, Dominik2,3,6,7; Lawrence, Duncan2,3; Weinstein, Jeremy1,2,3 | |
2018-01-19 | |
发表期刊 | SCIENCE
![]() |
ISSN | 0036-8075 |
EISSN | 1095-9203 |
出版年 | 2018 |
卷号 | 359期号:6373页码:325-328 |
文章类型 | Article |
语种 | 英语 |
国家 | USA; Switzerland; England |
英文摘要 | Developed democracies are settling an increased number of refugees, many of whom face challenges integrating into host societies. We developed a flexible data-driven algorithm that assigns refugees across resettlement locations to improve integration outcomes. The algorithm uses a combination of supervised machine learning and optimal matching to discover and leverage synergies between refugee characteristics and resettlement sites. The algorithm was tested on historical registry data from two countries with different assignment regimes and refugee populations, the United States and Switzerland. Our approach led to gains of roughly 40 to 70%, on average, in refugees' employment outcomes relative to current assignment practices. This approach can provide governments with a practical and cost-efficient policy tool that can be immediately implemented within existing institutional structures. |
领域 | 地球科学 ; 气候变化 ; 资源环境 |
收录类别 | SCI-E ; SSCI |
WOS记录号 | WOS:000423236700038 |
WOS关键词 | ETHNIC ENCLAVES ; IMMIGRANTS ; OUTCOMES ; QUOTAS |
WOS类目 | Multidisciplinary Sciences |
WOS研究方向 | Science & Technology - Other Topics |
URL | 查看原文 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.173/C666/handle/2XK7JSWQ/197806 |
专题 | 地球科学 资源环境科学 气候变化 |
作者单位 | 1.Stanford Univ, Dept Polit Sci, Stanford, CA 94305 USA; 2.Stanford Univ, Immigrat Policy Lab, Stanford, CA 94305 USA; 3.ETH, CH-8092 Zurich, Switzerland; 4.Dartmouth Coll, Dept Govt, Hanover, NH 03755 USA; 5.Stanford Univ, Grad Sch Business, Stanford, CA 94305 USA; 6.ETH, Ctr Comparat & Int Studies, CH-8092 Zurich, Switzerland; 7.London Sch Econ & Polit Sci, Dept Govt, London WC2A 2AE, England |
推荐引用方式 GB/T 7714 | Bansak, Kirk,Ferwerda, Jeremy,Hainmueller, Jens,et al. Improving refugee integration through data-driven algorithmic assignment[J]. SCIENCE,2018,359(6373):325-328. |
APA | Bansak, Kirk.,Ferwerda, Jeremy.,Hainmueller, Jens.,Dillon, Andrea.,Hangartner, Dominik.,...&Weinstein, Jeremy.(2018).Improving refugee integration through data-driven algorithmic assignment.SCIENCE,359(6373),325-328. |
MLA | Bansak, Kirk,et al."Improving refugee integration through data-driven algorithmic assignment".SCIENCE 359.6373(2018):325-328. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论