GSTDTAP  > 资源环境科学
DOI10.1002/2017WR020403
A Bayesian Hierarchical Approach to Multivariate Nonstationary Hydrologic Frequency Analysis
Bracken, C.1; Holman, K. D.2; Rajagopalan, B.3,4; Moradkhani, H.5
2018
发表期刊WATER RESOURCES RESEARCH
ISSN0043-1397
EISSN1944-7973
出版年2018
卷号54期号:1页码:243-255
文章类型Article
语种英语
国家USA
英文摘要

We present a general Bayesian hierarchical framework for conducting nonstationary frequency analysis of multiple hydrologic variables. In this, annual maxima from each variable are assumed to follow a generalized extreme value (GEV) distribution in which the location parameter is allowed to vary in time. A Gaussian elliptical copula is used to model the joint distribution of all variables. We demonstrate the utility of this framework with a joint frequency analysis model of annual peak snow water equivalent (SWE), annual peak flow, and annual peak reservoir elevation at Taylor Park dam in Colorado, USA. Indices of large-scale climate drivers-El Nino Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO) are used as covariates to model temporal nonstationarity. The Bayesian framework provides the posterior distribution of the model parameters and consequently the return levels. Results show that performing a multivariate joint frequency analysis reduces the uncertainty in return level estimates and better captures multivariate dependence compared to an independent model.


Plain Language Summary In this study, we develop a method for determining the probability of occurrence of rare hydrologic events (e.g., floods). Utilizing modern statistical methods, we are able to estimate occurrence probabilities for multiple hydrologic variables simultaneously while incorporating climate information that changes in time. We apply this technique to estimate occurrence probabilities for stream-flow, reservoir elevation, and snow levels for the Taylor Park reservoir in Colorado, USA. This method provides several benefits over traditional methods including reduction of uncertainty and a flexible model structure which allows for the incorporation of climate information.


领域资源环境
收录类别SCI-E
WOS记录号WOS:000428474000014
WOS关键词EXTREME-VALUE ANALYSIS ; CLIMATE-CHANGE ; CHANGING CLIMATE ; PEARSON TYPE-3 ; COPULA ; RISK ; PRECIPITATION ; STATISTICS ; MODEL ; DISTRIBUTIONS
WOS类目Environmental Sciences ; Limnology ; Water Resources
WOS研究方向Environmental Sciences & Ecology ; Marine & Freshwater Biology ; Water Resources
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/20085
专题资源环境科学
作者单位1.Bonneville Power Adm, Portland, OR 97232 USA;
2.Bur Reclamat, Tech Serv Ctr, Denver, CO USA;
3.Univ Colorado, Dept Civil Environm & Architectural Engn, Boulder, CO 80309 USA;
4.Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA;
5.Portland State Univ, Dept Civil & Environm Engn, Portland, OR 97207 USA
推荐引用方式
GB/T 7714
Bracken, C.,Holman, K. D.,Rajagopalan, B.,et al. A Bayesian Hierarchical Approach to Multivariate Nonstationary Hydrologic Frequency Analysis[J]. WATER RESOURCES RESEARCH,2018,54(1):243-255.
APA Bracken, C.,Holman, K. D.,Rajagopalan, B.,&Moradkhani, H..(2018).A Bayesian Hierarchical Approach to Multivariate Nonstationary Hydrologic Frequency Analysis.WATER RESOURCES RESEARCH,54(1),243-255.
MLA Bracken, C.,et al."A Bayesian Hierarchical Approach to Multivariate Nonstationary Hydrologic Frequency Analysis".WATER RESOURCES RESEARCH 54.1(2018):243-255.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Bracken, C.]的文章
[Holman, K. D.]的文章
[Rajagopalan, B.]的文章
百度学术
百度学术中相似的文章
[Bracken, C.]的文章
[Holman, K. D.]的文章
[Rajagopalan, B.]的文章
必应学术
必应学术中相似的文章
[Bracken, C.]的文章
[Holman, K. D.]的文章
[Rajagopalan, B.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。