GSTDTAP  > 资源环境科学
DOI10.1029/2017WR022488
A Robust Gauss-Newton Algorithm for the Optimization of Hydrological Models: From Standard Gauss-Newton to Robust Gauss-Newton
Qin, Youwei1,2; Kavetski, Dmitri3; Kuczera, George2
2018-11-01
发表期刊WATER RESOURCES RESEARCH
ISSN0043-1397
EISSN1944-7973
出版年2018
卷号54期号:11页码:9655-9683
文章类型Article
语种英语
国家Peoples R China; Australia
英文摘要

Model calibration using optimization algorithms is a perennial challenge in hydrological modeling. This study explores opportunities to improve the efficiency of a Newton-type method by making it more robust against problematic features in models' objective functions, including local optima and other noise. We introduce the robust Gauss-Newton (RGN) algorithm for least squares optimization, which employs three heuristic schemes to enhance its exploratory abilities while keeping costs low. The large sampling scale (LSS) scheme is a central difference approximation with perturbation (sampling scale) made as large as possible to capture the overall objective function shape; the best-sampling point (BSP) scheme exploits known function values to detect better parameter locations; and the null-space jump (NSJ) scheme attempts to escape near-flat regions. The RGN heuristics are evaluated using a case study comprising four hydrological models and three catchments. The heuristics make synergistic contributions to overall efficiency: the LSS scheme substantially improves reliability albeit at the expense of increased costs, and scenarios where LSS on its own is ineffective are bolstered by the BSP and NSJ schemes. In 11 of 12 modeling scenarios, RGN is 1.4-18 times more efficient in finding the global optimum than the standard Gauss-Newton algorithm; similar gains are made in finding tolerable optima. Importantly, RGN offers its largest gains when working with difficult objective functions. The empirical analysis provides insights into tradeoffs between robustness versus cost, exploration versus exploitation, and how to manage these tradeoffs to maximize optimization efficiency. In the companion paper, the RGN algorithm is benchmarked against industry standard optimization algorithms.


英文关键词hydrological model calibration parameter optimization robust Gauss-Newton algorithm coarse gradient approximation reliability-cost tradeoffs algorithm efficiency
领域资源环境
收录类别SCI-E
WOS记录号WOS:000453369400059
WOS关键词GLOBAL SENSITIVITY-ANALYSIS ; PARAMETER OPTIMIZATION ; CATCHMENT MODELS ; CALIBRATION ; STREAMFLOW ; INFERENCE ; TOOL
WOS类目Environmental Sciences ; Limnology ; Water Resources
WOS研究方向Environmental Sciences & Ecology ; Marine & Freshwater Biology ; Water Resources
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/20114
专题资源环境科学
作者单位1.Hohai Univ, Ctr Global Change & Water Cycle, State Key Lab Hydrol Water Resources & Hydraul En, Nanjing, Jiangsu, Peoples R China;
2.Univ Newcastle, Sch Engn, Callaghan, NSW, Australia;
3.Univ Adelaide, Sch Civil Environm & Min Engn, Adelaide, SA, Australia
推荐引用方式
GB/T 7714
Qin, Youwei,Kavetski, Dmitri,Kuczera, George. A Robust Gauss-Newton Algorithm for the Optimization of Hydrological Models: From Standard Gauss-Newton to Robust Gauss-Newton[J]. WATER RESOURCES RESEARCH,2018,54(11):9655-9683.
APA Qin, Youwei,Kavetski, Dmitri,&Kuczera, George.(2018).A Robust Gauss-Newton Algorithm for the Optimization of Hydrological Models: From Standard Gauss-Newton to Robust Gauss-Newton.WATER RESOURCES RESEARCH,54(11),9655-9683.
MLA Qin, Youwei,et al."A Robust Gauss-Newton Algorithm for the Optimization of Hydrological Models: From Standard Gauss-Newton to Robust Gauss-Newton".WATER RESOURCES RESEARCH 54.11(2018):9655-9683.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Qin, Youwei]的文章
[Kavetski, Dmitri]的文章
[Kuczera, George]的文章
百度学术
百度学术中相似的文章
[Qin, Youwei]的文章
[Kavetski, Dmitri]的文章
[Kuczera, George]的文章
必应学术
必应学术中相似的文章
[Qin, Youwei]的文章
[Kavetski, Dmitri]的文章
[Kuczera, George]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。