GSTDTAP  > 资源环境科学
DOI10.1002/2017WR021622
A Taylor Expansion-Based Adaptive Design Strategy for Global Surrogate Modeling With Applications in Groundwater Modeling
Mo, Shaoxing1; Lu, Dan2; Shi, Xiaoqing1; Zhang, Guannan3; Ye, Ming4; Wu, Jianfeng1; Wu, Jichun1
2017-12-01
发表期刊WATER RESOURCES RESEARCH
ISSN0043-1397
EISSN1944-7973
出版年2017
卷号53期号:12
文章类型Article
语种英语
国家Peoples R China; USA
英文摘要

Global sensitivity analysis (GSA) and uncertainty quantification (UQ) for groundwater modeling are challenging because of the model complexity and significant computational requirements. To reduce the massive computational cost, a cheap-to-evaluate surrogate model is usually constructed to approximate and replace the expensive groundwater models in the GSA and UQ. Constructing an accurate surrogate requires actual model simulations on a number of parameter samples. Thus, a robust experimental design strategy is desired to locate informative samples so as to reduce the computational cost in surrogate construction and consequently to improve the efficiency in the GSA and UQ. In this study, we develop a Taylor expansion-based adaptive design (TEAD) that aims to build an accurate global surrogate model with a small training sample size. TEAD defines a novel hybrid score function to search informative samples, and a robust stopping criterion to terminate the sample search that guarantees the resulted approximation errors satisfy the desired accuracy. The good performance of TEAD in building global surrogate models is demonstrated in seven analytical functions with different dimensionality and complexity in comparison to two widely used experimental design methods. The application of the TEAD-based surrogate method in two groundwater models shows that the TEAD design can effectively improve the computational efficiency of GSA and UQ for groundwater modeling.


领域资源环境
收录类别SCI-E
WOS记录号WOS:000423299000044
WOS关键词INDEPENDENT SENSITIVITY-ANALYSIS ; POLYNOMIAL CHAOS EXPANSIONS ; UNCERTAINTY PROPAGATION ; PARAMETER-ESTIMATION ; SAMPLING STRATEGIES ; EFFICIENT ; OPTIMIZATION ; FLOW ; APPROXIMATION
WOS类目Environmental Sciences ; Limnology ; Water Resources
WOS研究方向Environmental Sciences & Ecology ; Marine & Freshwater Biology ; Water Resources
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/20127
专题资源环境科学
作者单位1.Nanjing Univ, Key Lab Surficial Geochem, Minist Educ, Sch Earth Sci & Engn, Nanjing, Jiangsu, Peoples R China;
2.Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN USA;
3.Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN USA;
4.Florida State Univ, Dept Sci Comp, Tallahassee, FL 32306 USA
推荐引用方式
GB/T 7714
Mo, Shaoxing,Lu, Dan,Shi, Xiaoqing,et al. A Taylor Expansion-Based Adaptive Design Strategy for Global Surrogate Modeling With Applications in Groundwater Modeling[J]. WATER RESOURCES RESEARCH,2017,53(12).
APA Mo, Shaoxing.,Lu, Dan.,Shi, Xiaoqing.,Zhang, Guannan.,Ye, Ming.,...&Wu, Jichun.(2017).A Taylor Expansion-Based Adaptive Design Strategy for Global Surrogate Modeling With Applications in Groundwater Modeling.WATER RESOURCES RESEARCH,53(12).
MLA Mo, Shaoxing,et al."A Taylor Expansion-Based Adaptive Design Strategy for Global Surrogate Modeling With Applications in Groundwater Modeling".WATER RESOURCES RESEARCH 53.12(2017).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Mo, Shaoxing]的文章
[Lu, Dan]的文章
[Shi, Xiaoqing]的文章
百度学术
百度学术中相似的文章
[Mo, Shaoxing]的文章
[Lu, Dan]的文章
[Shi, Xiaoqing]的文章
必应学术
必应学术中相似的文章
[Mo, Shaoxing]的文章
[Lu, Dan]的文章
[Shi, Xiaoqing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。