Global S&T Development Trend Analysis Platform of Resources and Environment
DOI | 10.1038/s41586-019-1444-4 |
Niobium tungsten oxides for high-rate lithium-ion energy storage | |
Griffith, Kent J.1; Wiaderek, Kamila M.2; Cibin, Giannantonio3; Marbella, Lauren E.1; Grey, Clare P.1 | |
2019-07-24 | |
发表期刊 | NATURE
![]() |
ISSN | 0028-0836 |
EISSN | 1476-4687 |
出版年 | 2018 |
卷号 | 559期号:7715页码:556-+ |
文章类型 | Article |
语种 | 英语 |
国家 | England; USA |
英文摘要 | The maximum power output and minimum charging time of a lithium-ion battery depend on both ionic and electronic transport. Ionic diffusion within the electrochemically active particles generally represents a fundamental limitation to the rate at which a battery can be charged and discharged. To compensate for the relatively slow solid-state ionic diffusion and to enable high power and rapid charging, the active particles are frequently reduced to nanometre dimensions, to the detriment of volumetric packing density, cost, stability and sustainability. As an alternative to nanoscaling, here we show that two complex niobium tungsten oxides-Nb16W5O55 and Nb18W16O93, which adopt crystallographic shear and bronze-like structures, respectively-can intercalate large quantities of lithium at high rates, even when the sizes of the niobium tungsten oxide particles are of the order of micrometres. Measurements of lithium-ion diffusion coefficients in both structures reveal room-temperature values that are several orders of magnitude higher than those in typical electrode materials such as Li4Ti5O12 and LiMn2O4. Multielectron redox, buffered volume expansion, topologically frustrated niobium/tungsten polyhedral arrangements and rapid solid-state lithium transport lead to extremely high volumetric capacities and rate performance. Unconventional materials and mechanisms that enable lithiation of micrometre-sized particles in minutes have implications for high-power applications, fast-charging devices, all-solid-state energy storage systems, electrode design and material discovery. |
领域 | 地球科学 ; 气候变化 ; 资源环境 |
收录类别 | SCI-E |
WOS记录号 | WOS:000439850800045 |
WOS关键词 | MULTIPLE PHASE-FORMATION ; BINARY-SYSTEM NB2O5-WO3 ; RIGID-UNIT MODES ; LI-ION ; DIFFUSION MEASUREMENTS ; CRYSTALLOGRAPHIC SHEAR ; THERMAL-EXPANSION ; CRYSTAL-STRUCTURE ; NMR ; DYNAMICS |
WOS类目 | Multidisciplinary Sciences |
WOS研究方向 | Science & Technology - Other Topics |
URL | 查看原文 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.173/C666/handle/2XK7JSWQ/203101 |
专题 | 地球科学 资源环境科学 气候变化 |
作者单位 | 1.Univ Cambridge, Dept Chem, Cambridge, England; 2.Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA; 3.Diamond Light Source, Harwell Sci & Innovat Campus, Didcot, Oxon, England |
推荐引用方式 GB/T 7714 | Griffith, Kent J.,Wiaderek, Kamila M.,Cibin, Giannantonio,et al. Niobium tungsten oxides for high-rate lithium-ion energy storage[J]. NATURE,2019,559(7715):556-+. |
APA | Griffith, Kent J.,Wiaderek, Kamila M.,Cibin, Giannantonio,Marbella, Lauren E.,&Grey, Clare P..(2019).Niobium tungsten oxides for high-rate lithium-ion energy storage.NATURE,559(7715),556-+. |
MLA | Griffith, Kent J.,et al."Niobium tungsten oxides for high-rate lithium-ion energy storage".NATURE 559.7715(2019):556-+. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论