Global S&T Development Trend Analysis Platform of Resources and Environment
DOI | 10.1029/2017WR020991 |
The Efficiency of Data Assimilation | |
Nearing, Grey1; Yatheendradas, Soni2,3; Crow, Wade4; Zhan, Xiwu5; Liu, Jicheng3,5; Chen, Fan4 | |
2018-09-01 | |
发表期刊 | WATER RESOURCES RESEARCH
![]() |
ISSN | 0043-1397 |
EISSN | 1944-7973 |
出版年 | 2018 |
卷号 | 54期号:9页码:6374-6392 |
文章类型 | Article |
语种 | 英语 |
国家 | USA |
英文摘要 | Data assimilation is the application of Bayes' theorem to condition the states of a dynamical systems model on observations. Any real-world application of Bayes' theorem is approximate, and therefore, we cannot expect that data assimilation will preserve all of the information available from models and observations. We outline a framework for measuring information in models, observations, and evaluation data in a way that allows us to quantify information loss during (necessarily imperfect) data assimilation. This facilitates quantitative analysis of trade-offs between improving (usually expensive) remote sensing observing systems versus improving data assimilation design and implementation. We demonstrate this methodology on a previously published application of the ensemble Kalman filter used to assimilate remote sensing soil moisture retrievals from Advanced Microwave Scattering Radiometer for Earth (AMSR-E) into the Noah land surface model. |
英文关键词 | data assimilation information theory Bayesian efficiency soil moisture |
领域 | 资源环境 |
收录类别 | SCI-E |
WOS记录号 | WOS:000448088100032 |
WOS关键词 | ATMOSPHERE TRANSFER SCHEME ; LAND-SURFACE SCHEME ; SOIL-MOISTURE ; RUNOFF ; PARAMETERIZATION ; INFORMATION ; RETRIEVALS ; MODEL |
WOS类目 | Environmental Sciences ; Limnology ; Water Resources |
WOS研究方向 | Environmental Sciences & Ecology ; Marine & Freshwater Biology ; Water Resources |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.173/C666/handle/2XK7JSWQ/20390 |
专题 | 资源环境科学 |
作者单位 | 1.Univ Alabama, Dept Geol Sci, Tuscaloosa, AL 35487 USA; 2.NASA GSFC, Hydrol Sci Lab, Greenbelt, MD USA; 3.Univ Maryland, ESSIC, College Pk, MD 20742 USA; 4.USDA ARS, Hydrol & Remote Sensing Lab, Beltsville, MD USA; 5.NOAA, NESDIS Ctr Satellite Applicat & Res, College Pk, MD USA |
推荐引用方式 GB/T 7714 | Nearing, Grey,Yatheendradas, Soni,Crow, Wade,et al. The Efficiency of Data Assimilation[J]. WATER RESOURCES RESEARCH,2018,54(9):6374-6392. |
APA | Nearing, Grey,Yatheendradas, Soni,Crow, Wade,Zhan, Xiwu,Liu, Jicheng,&Chen, Fan.(2018).The Efficiency of Data Assimilation.WATER RESOURCES RESEARCH,54(9),6374-6392. |
MLA | Nearing, Grey,et al."The Efficiency of Data Assimilation".WATER RESOURCES RESEARCH 54.9(2018):6374-6392. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论