GSTDTAP  > 地球科学
DOI10.1073/pnas.1812098116
Redox and pH gradients drive amino acid synthesis in iron oxyhydroxide mineral systems
Barge, Laura M.1; Flores, Erika1; Baum, Marc M.2; VanderVelde, David G.3; Russell, Michael J.1
2019
发表期刊PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
ISSN0027-8424
出版年2019
卷号116期号:11页码:4828-4833
文章类型Article
语种英语
国家USA
英文摘要

Iron oxyhydroxide minerals, known to be chemically reactive and significant for elemental cycling, are thought to have been abundant in early-Earth seawater, sediments, and hydrothermal systems. In the anoxic Fe2+-rich early oceans, these minerals would have been only partially oxidized and thus redox-active, perhaps able to promote prebiotic chemical reactions. We show that pyruvate, a simple organic molecule that can form in hydrothermal systems, can undergo reductive amination in the presence of mixed-valence iron oxyhydroxides to form the amino acid alanine, as well as the reduced product lactate. Furthermore, geochemical gradients of pH, redox, and temperature in iron oxyhydroxide systems affect product selectivity. The maximum yield of alanine was observed when the iron oxyhydroxide mineral contained 1: 1 Fe(II): Fe(III), under alkaline conditions, and at moderately warm temperatures. These represent conditions that may be found, for example, in iron-containing sediments near an alkaline hydrothermal vent system. The partially oxidized state of the precipitate was significant in promoting amino acid formation: Purely ferrous hydroxides did not drive reductive amination but instead promoted pyruvate reduction to lactate, and ferric hydroxides did not result in any reaction. Prebiotic chemistry driven by redox-active iron hydroxide minerals on the early Earth would therefore be strongly affected by geochemical gradients of E-h, pH, and temperature, and liquid-phase products would be able to diffuse to other conditions within the sediment column to participate in further reactions.


英文关键词life emergence iron hydroxides hydrothermal vents early Earth gradients
领域地球科学 ; 气候变化 ; 资源环境
收录类别SCI-E
WOS记录号WOS:000460911500020
WOS关键词GREEN RUST ; REDUCTIVE AMINATION ; ORIGIN ; CHEMISTRY ; LIFE ; EVOLUTION ; CATALYSTS ; INSIGHTS ; NITRITE ; OXIDES
WOS类目Multidisciplinary Sciences
WOS研究方向Science & Technology - Other Topics
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/205067
专题地球科学
资源环境科学
气候变化
作者单位1.CALTECH, Jet Prop Lab, NASA, 4800 Oak Grove Dr, Pasadena, CA 91109 USA;
2.Oak Crest Inst Sci, Dept Chem, Monrovia, CA 91016 USA;
3.CALTECH, Dept Chem, Pasadena, CA 91125 USA
推荐引用方式
GB/T 7714
Barge, Laura M.,Flores, Erika,Baum, Marc M.,et al. Redox and pH gradients drive amino acid synthesis in iron oxyhydroxide mineral systems[J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA,2019,116(11):4828-4833.
APA Barge, Laura M.,Flores, Erika,Baum, Marc M.,VanderVelde, David G.,&Russell, Michael J..(2019).Redox and pH gradients drive amino acid synthesis in iron oxyhydroxide mineral systems.PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA,116(11),4828-4833.
MLA Barge, Laura M.,et al."Redox and pH gradients drive amino acid synthesis in iron oxyhydroxide mineral systems".PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 116.11(2019):4828-4833.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Barge, Laura M.]的文章
[Flores, Erika]的文章
[Baum, Marc M.]的文章
百度学术
百度学术中相似的文章
[Barge, Laura M.]的文章
[Flores, Erika]的文章
[Baum, Marc M.]的文章
必应学术
必应学术中相似的文章
[Barge, Laura M.]的文章
[Flores, Erika]的文章
[Baum, Marc M.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。