Global S&T Development Trend Analysis Platform of Resources and Environment
DOI | 10.5194/acp-17-4871-2017 |
Is increasing ice crystal sedimentation velocity in geoengineering simulations a good proxy for cirrus cloud seeding? | |
Gasparini, Blaz; Munch, Steffen; Poncet, Laure; Feldmann, Monika; Lohmann, Ulrike | |
2017-04-13 | |
发表期刊 | ATMOSPHERIC CHEMISTRY AND PHYSICS
![]() |
ISSN | 1680-7316 |
EISSN | 1680-7324 |
出版年 | 2017 |
卷号 | 17期号:7 |
文章类型 | Article |
语种 | 英语 |
国家 | Switzerland |
英文摘要 | The complex microphysical details of cirrus seeding with ice nucleating particles (INPs) in numerical simulations are often mimicked by increasing ice crystal sedimentation velocities. So far it has not been tested whether these results are comparable to geoengineering simulations in which cirrus clouds are seeded with INPs. We compare simulations where the ice crystal sedimentation velocity is increased at temperatures colder than -35 degrees C with simulations of cirrus seeding with INPs using the ECHAM-HAM general circulation model. The radiative flux response of the two methods shows a similar behaviour in terms of annual and seasonal averages. Both methods decrease surface temperature but increase precipitation in response to a decreased atmospheric stability. Moreover, simulations of seeding with INPs lead to a decrease in liquid clouds, which counteracts part of the cooling due to changes in cirrus clouds. The liquid cloud response is largely avoided in a simulation where seeding occurs during night only. Simulations with increased ice crystal sedimentation velocity, however, lead to counteracting mixed-phase cloud responses. The increased sedimentation velocity simulations can counteract up to 60% of the radiative effect of CO2 doubling with a maximum net top-of-the-atmosphere forcing of -2.2W m(-2). They induce a 30% larger surface temperature response, due to their lower altitude of maximum diabatic forcing compared with simulations of seeding with INPs. |
领域 | 地球科学 |
收录类别 | SCI-E |
WOS记录号 | WOS:000403956400003 |
WOS关键词 | PARAMETERIZATION ; NUCLEATION ; NUCLEI ; WATER ; MICROPHYSICS ; SENSITIVITY ; AEROSOLS ; WEATHER ; CYCLE ; SIZE |
WOS类目 | Environmental Sciences ; Meteorology & Atmospheric Sciences |
WOS研究方向 | Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.173/C666/handle/2XK7JSWQ/20610 |
专题 | 地球科学 |
作者单位 | Swiss Fed Inst Technol, Inst Atmospher & Climate Sci, Zurich, Switzerland |
推荐引用方式 GB/T 7714 | Gasparini, Blaz,Munch, Steffen,Poncet, Laure,et al. Is increasing ice crystal sedimentation velocity in geoengineering simulations a good proxy for cirrus cloud seeding?[J]. ATMOSPHERIC CHEMISTRY AND PHYSICS,2017,17(7). |
APA | Gasparini, Blaz,Munch, Steffen,Poncet, Laure,Feldmann, Monika,&Lohmann, Ulrike.(2017).Is increasing ice crystal sedimentation velocity in geoengineering simulations a good proxy for cirrus cloud seeding?.ATMOSPHERIC CHEMISTRY AND PHYSICS,17(7). |
MLA | Gasparini, Blaz,et al."Is increasing ice crystal sedimentation velocity in geoengineering simulations a good proxy for cirrus cloud seeding?".ATMOSPHERIC CHEMISTRY AND PHYSICS 17.7(2017). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论