GSTDTAP  > 地球科学
DOI10.5194/acp-18-18149-2018
Attribution of recent increases in atmospheric methane through 3-D inverse modelling
McNorton, Joe1,2; Wilson, Chris1,3; Gloor, Manuel4; Parker, Rob J.3,5; Boesch, Hartmut3,5; Feng, Wuhu1,6; Hossaini, Ryan7; Chipperfield, Martyn P.1,3
2018-12-21
发表期刊ATMOSPHERIC CHEMISTRY AND PHYSICS
ISSN1680-7316
EISSN1680-7324
出版年2018
卷号18期号:24页码:18149-18168
文章类型Article
语种英语
国家England
英文摘要

The atmospheric methane (CH4) growth rate has varied considerably in recent decades. Unexplained renewed growth after 2006 followed 7 years of stagnation and coincided with an isotopic trend toward CH4 more depleted in C-13, suggesting changes in sources and/or sinks. Using surface observations of both CH4 and the relative change of isotopologue ratio (delta(CH4)-C-13) to constrain a global 3-D chemical transport model (CTM), we have performed a synthesis inversion for source and sink attribution. Our method extends on previous studies by providing monthly and regional attribution of emissions from six different sectors and changes in atmospheric sinks for the extended 2003-2015 period. Regional evaluation of the model CH4 tracer with independent column observations from the Greenhouse Gases Observing Satellite (GOSAT) shows improved performance when using posterior fluxes (R = 0.94-0.96, RMSE = 8.3-16.5 ppb), relative to prior fluxes (R = 0.60-0.92, RMSE = 48.6-64.6 ppb). Further independent validation with data from the Total Carbon Column Observing Network (TC-CON) shows a similar improvement in the posterior fluxes (R = 0.87, RMSE = 18.8 ppb) compared to the prior fluxes (R = 0.69, RMSE = 55.9 ppb). Based on these improved posterior fluxes, the inversion results suggest the most likely cause of the renewed methane growth is a post-2007 1.8 +/- 0.4% decrease in mean OH, a 12.9 +/- 2.7% increase in energy sector emissions, mainly from Africa-Middle East and southern Asia-Oceania, and a 2.6 +/- 1.8% increase in wetland emissions, mainly from northern Eurasia. The posterior wetland flux increases are in general agreement with bottom-up estimates, but the energy sector growth is greater than estimated by bottom-up methods. The model results are consistent across a range of sensitivity analyses. When forced to assume a constant (annually repeating) OH distribution, the inversion requires a greater increase in energy sector (13.6 +/- 2.7 %) and wetland (3.6 +/- 1.8 %) emissions and an 11.5 +/- 3.8% decrease in biomass burning emissions. Assuming no prior trend in sources and sinks slightly reduces the posterior growth rate in energy sector and wetland emissions and further increases the magnitude of the negative OH trend. We find that possible tropospheric Cl variations do not influence delta(CH4)-C-13 and CH4 trends, although we suggest further work on Cl variability is required to fully diagnose this contribution. While the study provides quantitative insight into possible emissions variations which may explain the observed trends, uncertainty in prior source and sink estimates and a paucity of delta(CH4)-C-13 observations limit the robustness of the posterior estimates.


领域地球科学
收录类别SCI-E
WOS记录号WOS:000454144300002
WOS关键词FOSSIL-FUEL ; CH4 ; VARIABILITY ; TRENDS ; GROWTH ; BUDGET ; ASIA ; OH
WOS类目Environmental Sciences ; Meteorology & Atmospheric Sciences
WOS研究方向Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/20625
专题地球科学
作者单位1.Univ Leeds, Sch Earth & Environm, Leeds, W Yorkshire, England;
2.European Ctr Medium Range Weather Forecasts, Res Dept, Reading, Berks, England;
3.Univ Leeds, Natl Ctr Earth Observat, Leeds, W Yorkshire, England;
4.Univ Leeds, Sch Geog, Leeds, W Yorkshire, England;
5.Univ Leicester, Dept Phys & Astron, Earth Observat Sci Grp, Leicester, Leics, England;
6.Univ Leeds, Natl Ctr Atmospher Sci, Leeds, W Yorkshire, England;
7.Univ Lancaster, Lancaster Environm Ctr, Lancaster, England
推荐引用方式
GB/T 7714
McNorton, Joe,Wilson, Chris,Gloor, Manuel,et al. Attribution of recent increases in atmospheric methane through 3-D inverse modelling[J]. ATMOSPHERIC CHEMISTRY AND PHYSICS,2018,18(24):18149-18168.
APA McNorton, Joe.,Wilson, Chris.,Gloor, Manuel.,Parker, Rob J..,Boesch, Hartmut.,...&Chipperfield, Martyn P..(2018).Attribution of recent increases in atmospheric methane through 3-D inverse modelling.ATMOSPHERIC CHEMISTRY AND PHYSICS,18(24),18149-18168.
MLA McNorton, Joe,et al."Attribution of recent increases in atmospheric methane through 3-D inverse modelling".ATMOSPHERIC CHEMISTRY AND PHYSICS 18.24(2018):18149-18168.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[McNorton, Joe]的文章
[Wilson, Chris]的文章
[Gloor, Manuel]的文章
百度学术
百度学术中相似的文章
[McNorton, Joe]的文章
[Wilson, Chris]的文章
[Gloor, Manuel]的文章
必应学术
必应学术中相似的文章
[McNorton, Joe]的文章
[Wilson, Chris]的文章
[Gloor, Manuel]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。