GSTDTAP  > 气候变化
DOI10.1175/JCLI-D-17-0150.1
A New Method for Temperature Spatial Interpolation Based on Sparse Historical Stations
Xu, Chengdong1; Wang, Jinfeng1; Li, Qingxiang2
2018-03-01
发表期刊JOURNAL OF CLIMATE
ISSN0894-8755
EISSN1520-0442
出版年2018
卷号31期号:5页码:1757-1770
文章类型Article
语种英语
国家Peoples R China
英文摘要

Long-term grid historical temperature datasets are the foundation of climate change research. Datasets developed by traditional interpolation methods usually contain data for a period of less than 50 yr, with a relatively low spatial resolution owing to the sparse distribution of stations in the historical period. In this study, the point interpolation based on Biased Sentinel Hospitals Areal Disease Estimation (P-BSHADE) method has been used to interpolate 1-km grids of monthly surface air temperatures in the historical period of 1900-50 in China. The method can be used to remedy the station bias resulting from sparse coverage, and it considers the characteristics of spatial autocorrelation and nonhomogeneity of the temperature distribution to obtain unbiased and minimum error variance estimates. The results have been compared with those from widely used methods such as kriging, inverse distance weighting (IDW), and a combined spline with kriging (TPS-KRG) method, both theoretically and empirically. The leave-one-out cross-validation method using a real dataset was implemented. The root-mean-square error (RMSE) [mean absolute error (MAE)] for P-BSHADE is 0.98 degrees C (0.75 degrees C), while those for TPS-KRG, kriging, and IDW are 1.46 degrees (1.07 degrees), 2.23 degrees (1.51 degrees), and 2.64 degrees C (1.85 degrees C), respectively. The results of validation using a simulated dataset also present the smallest error for P-BSHADE, demonstrating its empirical superiority. In addition to its empirical superiority, the method also can produce a map of the estimated error variance, representing the uncertainty of estimation.


领域气候变化
收录类别SCI-E
WOS记录号WOS:000427438100005
WOS关键词AIR-TEMPERATURE ; TIME-SERIES ; PRECIPITATION ; VARIABILITY ; TRENDS
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/20885
专题气候变化
作者单位1.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing, Peoples R China;
2.Sun Yat Sen Univ, Sch Atmospher Sci, Guangzhou, Guangdong, Peoples R China
推荐引用方式
GB/T 7714
Xu, Chengdong,Wang, Jinfeng,Li, Qingxiang. A New Method for Temperature Spatial Interpolation Based on Sparse Historical Stations[J]. JOURNAL OF CLIMATE,2018,31(5):1757-1770.
APA Xu, Chengdong,Wang, Jinfeng,&Li, Qingxiang.(2018).A New Method for Temperature Spatial Interpolation Based on Sparse Historical Stations.JOURNAL OF CLIMATE,31(5),1757-1770.
MLA Xu, Chengdong,et al."A New Method for Temperature Spatial Interpolation Based on Sparse Historical Stations".JOURNAL OF CLIMATE 31.5(2018):1757-1770.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xu, Chengdong]的文章
[Wang, Jinfeng]的文章
[Li, Qingxiang]的文章
百度学术
百度学术中相似的文章
[Xu, Chengdong]的文章
[Wang, Jinfeng]的文章
[Li, Qingxiang]的文章
必应学术
必应学术中相似的文章
[Xu, Chengdong]的文章
[Wang, Jinfeng]的文章
[Li, Qingxiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。