GSTDTAP  > 资源环境科学
DOI10.1002/2017WR022148
Training-Image Based Geostatistical Inversion Using a Spatial Generative Adversarial Neural Network
Laloy, Eric1; Herault, Romain2; Jacques, Diederik1; Linde, Niklas3
2018
发表期刊WATER RESOURCES RESEARCH
ISSN0043-1397
EISSN1944-7973
出版年2018
卷号54期号:1页码:381-406
文章类型Article
语种英语
国家Belgium; France; Switzerland
英文摘要

Probabilistic inversion within a multiple-point statistics framework is often computationally prohibitive for high-dimensional problems. To partly address this, we introduce and evaluate a new training-image based inversion approach for complex geologic media. Our approach relies on a deep neural network of the generative adversarial network (GAN) type. After training using a training image (TI), our proposed spatial GAN (SGAN) can quickly generate 2-D and 3-D unconditional realizations. A key characteristic of our SGAN is that it defines a (very) low-dimensional parameterization, thereby allowing for efficient probabilistic inversion using state-of-the-art Markov chain Monte Carlo (MCMC) methods. In addition, available direct conditioning data can be incorporated within the inversion. Several 2-D and 3-D categorical TIs are first used to analyze the performance of our SGAN for unconditional geostatistical simulation. Training our deep network can take several hours. After training, realizations containing a few millions of pixels/voxels can be produced in a matter of seconds. This makes it especially useful for simulating many thousands of realizations (e.g., for MCMC inversion) as the relative cost of the training per realization diminishes with the considered number of realizations. Synthetic inversion case studies involving 2-D steady state flow and 3-D transient hydraulic tomography with and without direct conditioning data are used to illustrate the effectiveness of our proposed SGAN-based inversion. For the 2-D case, the inversion rapidly explores the posterior model distribution. For the 3-D case, the inversion recovers model realizations that fit the data close to the target level and visually resemble the true model well.


领域资源环境
收录类别SCI-E
WOS记录号WOS:000428474000022
WOS关键词LOW-DIMENSIONAL REPRESENTATION ; MONTE-CARLO-SIMULATION ; POSTERIOR EXPLORATION ; MODEL ; MEDIA
WOS类目Environmental Sciences ; Limnology ; Water Resources
WOS研究方向Environmental Sciences & Ecology ; Marine & Freshwater Biology ; Water Resources
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/21377
专题资源环境科学
作者单位1.Belgian Nucl Res Ctr, Inst Environm Hlth & Safety, Engn & Geosyst Anal, Mol, Belgium;
2.Normandie Univ, UNIROUEN, UNIHAVRE, INSA Rouen,LITIS, Rouen, France;
3.Univ Lausanne, Inst Earth Sci, Appl & Environm Geophys Grp, Lausanne, Switzerland
推荐引用方式
GB/T 7714
Laloy, Eric,Herault, Romain,Jacques, Diederik,et al. Training-Image Based Geostatistical Inversion Using a Spatial Generative Adversarial Neural Network[J]. WATER RESOURCES RESEARCH,2018,54(1):381-406.
APA Laloy, Eric,Herault, Romain,Jacques, Diederik,&Linde, Niklas.(2018).Training-Image Based Geostatistical Inversion Using a Spatial Generative Adversarial Neural Network.WATER RESOURCES RESEARCH,54(1),381-406.
MLA Laloy, Eric,et al."Training-Image Based Geostatistical Inversion Using a Spatial Generative Adversarial Neural Network".WATER RESOURCES RESEARCH 54.1(2018):381-406.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Laloy, Eric]的文章
[Herault, Romain]的文章
[Jacques, Diederik]的文章
百度学术
百度学术中相似的文章
[Laloy, Eric]的文章
[Herault, Romain]的文章
[Jacques, Diederik]的文章
必应学术
必应学术中相似的文章
[Laloy, Eric]的文章
[Herault, Romain]的文章
[Jacques, Diederik]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。