Global S&T Development Trend Analysis Platform of Resources and Environment
项目编号 | 1924730 |
Collaborative Research: Antarctic Automatic Weather Station Program 2019-2022 | |
Matthew Lazzara (Principal Investigator) | |
主持机构 | University of Wisconsin-Madison |
项目开始年 | 2019 |
2019-09-01 | |
项目结束日期 | 2022-08-31 |
资助机构 | US-NSF |
项目类别 | Standard Grant |
项目经费 | 909401(USD) |
国家 | 美国 |
语种 | 英语 |
英文摘要 | The Antarctic Automatic Weather Station network is the most extensive surficial meteorological network in the Antarctic, approaching its 30th year at several of its data stations. Its prime focus is also as a long term observational record, to measure the near surface weather and climatology of the Antarctic atmosphere. Antarctic Automatic Weather Stations measure air-temperature, pressure, wind speed and direction at a nominal surface height of ~ 2-3m. Other parameters such as relative humidity and snow accumulation may also be taken. The surface observations from the Antarctic Automatic Weather Station network are also used operationally, for forecast purposes, and in the planning of field work. Surface observations made from the network have also been used to check the validity of satellite and remote sensing observations. The proposed effort informs our understanding of the Antarctic environment and its weather and climate trends over the past few decades. The research has implications for potential future operations and logistics for the US Antarctic Program during the winter season. As a part of this endeavor, all project participants will engage in a coordinated outreach effort to bring the famous Antarctic "cold" to public seminars, K-12, undergraduate, and graduate classrooms, and senior citizen centers. This project proposes to use the surface conditions observed by the Antarctic Automatic Weather Station (AWS) network to determine how large-scale modes of climate variability impact Antarctic weather and climate, how the surface observations from the AWS network are linked to surface layer and boundary layer processes. Consideration will also be given to low temperature physical environments such as may be encountered during Antarctic winter, and the best ways to characterize these, and other ?cold pool? phenomena. Observational data from the AWS are collected via Iridium network, or DCS Argos aboard either NOAA or MetOp polar orbiting satellites and thus made available in near real time to operational and synoptic weather forecasters over the GTS (WMO Global Telecommunication System). Being able to support improvements in numerical weather prediction and climate modeling will have lasting impacts on Antarctic science and logistical support. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. |
文献类型 | 项目 |
条目标识符 | http://119.78.100.173/C666/handle/2XK7JSWQ/213967 |
专题 | 环境与发展全球科技态势 |
推荐引用方式 GB/T 7714 | Matthew Lazzara .Collaborative Research: Antarctic Automatic Weather Station Program 2019-2022.2019. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论