GSTDTAP  > 资源环境科学
DOI10.1002/2016WR019512
Bayesian calibration of groundwater models with input data uncertainty
Xu, Tianfang1,2; Valocchi, Albert J.1; Ye, Ming3; Liang, Feng4; Lin, Yu-Feng5
2017-04-01
发表期刊WATER RESOURCES RESEARCH
ISSN0043-1397
EISSN1944-7973
出版年2017
卷号53期号:4
文章类型Article
语种英语
国家USA
英文摘要

Effective water resources management typically relies on numerical models to analyze groundwater flow and solute transport processes. Groundwater models are often subject to input data uncertainty, as some inputs (such as recharge and well pumping rates) are estimated and subject to uncertainty. Current practices of groundwater model calibration often overlook uncertainties in input data; this can lead to biased parameter estimates and compromised predictions. Through a synthetic case study of surface-ground water interaction under changing pumping conditions and land use, we investigate the impacts of uncertain pumping and recharge rates on model calibration and uncertainty analysis. We then present a Bayesian framework of model calibration to handle uncertain input of groundwater models. The framework implements a marginalizing step to account for input data uncertainty when evaluating likelihood. It was found that not accounting for input uncertainty may lead to biased, overconfident parameter estimates because parameters could be over-adjusted to compensate for possible input data errors. Parameter compensation can have deleterious impacts when the calibrated model is used to make forecast under a scenario that is different from calibration conditions. By marginalizing input data uncertainty, the Bayesian calibration approach effectively alleviates parameter compensation and gives more accurate predictions in the synthetic case study. The marginalizing Bayesian method also decomposes prediction uncertainty into uncertainties contributed by parameters, input data, and measurements. The results underscore the need to account for input uncertainty to better inform postmodeling decision making.


领域资源环境
收录类别SCI-E
WOS记录号WOS:000403682600039
WOS关键词MONTE-CARLO-SIMULATION
WOS类目Environmental Sciences ; Limnology ; Water Resources
WOS研究方向Environmental Sciences & Ecology ; Marine & Freshwater Biology ; Water Resources
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/21466
专题资源环境科学
作者单位1.Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA;
2.Michigan State Univ, Dept Earth & Environm Sci, E Lansing, MI 48824 USA;
3.Florida State Univ, Dept Comp Sci, Tallahassee, FL 32306 USA;
4.Univ Illinois, Dept Stat, Urbana, IL USA;
5.Univ Illinois, Prairie Res Inst, Illinois State Geol Survey, Urbana, IL USA
推荐引用方式
GB/T 7714
Xu, Tianfang,Valocchi, Albert J.,Ye, Ming,et al. Bayesian calibration of groundwater models with input data uncertainty[J]. WATER RESOURCES RESEARCH,2017,53(4).
APA Xu, Tianfang,Valocchi, Albert J.,Ye, Ming,Liang, Feng,&Lin, Yu-Feng.(2017).Bayesian calibration of groundwater models with input data uncertainty.WATER RESOURCES RESEARCH,53(4).
MLA Xu, Tianfang,et al."Bayesian calibration of groundwater models with input data uncertainty".WATER RESOURCES RESEARCH 53.4(2017).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xu, Tianfang]的文章
[Valocchi, Albert J.]的文章
[Ye, Ming]的文章
百度学术
百度学术中相似的文章
[Xu, Tianfang]的文章
[Valocchi, Albert J.]的文章
[Ye, Ming]的文章
必应学术
必应学术中相似的文章
[Xu, Tianfang]的文章
[Valocchi, Albert J.]的文章
[Ye, Ming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。