GSTDTAP  > 资源环境科学
DOI10.1002/2016WR019676
Predicting nonstationary flood frequencies: Evidence supports an updated stationarity thesis in the United States
Luke, Adam1; Vrugt, Jasper A.1,2; AghaKouchak, Amir1; Matthew, Richard3; Sanders, Brett F.1,3
2017-07-01
发表期刊WATER RESOURCES RESEARCH
ISSN0043-1397
EISSN1944-7973
出版年2017
卷号53期号:7
文章类型Article
语种英语
国家USA
英文摘要

Nonstationary extreme value analysis (NEVA) can improve the statistical representation of observed flood peak distributions compared to stationary (ST) analysis, but management of flood risk relies on predictions of out-of-sample distributions for which NEVA has not been comprehensively evaluated. In this study, we apply split-sample testing to 1250 annual maximum discharge records in the United States and compare the predictive capabilities of NEVA relative to ST extreme value analysis using a log-Pearson Type III (LPIII) distribution. The parameters of the LPIII distribution in the ST and nonstationary (NS) models are estimated from the first half of each record using Bayesian inference. The second half of each record is reserved to evaluate the predictions under the ST and NS models. The NS model is applied for prediction by (1) extrapolating the trend of the NS model parameters throughout the evaluation period and (2) using the NS model parameter values at the end of the fitting period to predict with an updated ST model (uST). Our analysis shows that the ST predictions are preferred, overall. NS model parameter extrapolation is rarely preferred. However, if fitting period discharges are influenced by physical changes in the watershed, for example from anthropogenic activity, the uST model is strongly preferred relative to ST and NS predictions. The uST model is therefore recommended for evaluation of current flood risk in watersheds that have undergone physical changes. Supporting information includes a MATLAB (R) program that estimates the (ST/NS/uST) LPIII parameters from annual peak discharge data through Bayesian inference.


领域资源环境
收录类别SCI-E
WOS记录号WOS:000407895000016
WOS关键词EXTREME-VALUE ANALYSIS ; MONTE-CARLO-SIMULATION ; CLIMATE-CHANGE ; RISK ; HAZARD ; MODEL ; PRECIPITATION ; FRAMEWORK ; EVENTS ; SERIES
WOS类目Environmental Sciences ; Limnology ; Water Resources
WOS研究方向Environmental Sciences & Ecology ; Marine & Freshwater Biology ; Water Resources
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/21628
专题资源环境科学
作者单位1.Univ Calif Irvine, Dept Civil & Environm Engn, Irvine, CA 92697 USA;
2.Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA;
3.Univ Calif Irvine, Dept Planning Policy & Design, Irvine, CA USA
推荐引用方式
GB/T 7714
Luke, Adam,Vrugt, Jasper A.,AghaKouchak, Amir,et al. Predicting nonstationary flood frequencies: Evidence supports an updated stationarity thesis in the United States[J]. WATER RESOURCES RESEARCH,2017,53(7).
APA Luke, Adam,Vrugt, Jasper A.,AghaKouchak, Amir,Matthew, Richard,&Sanders, Brett F..(2017).Predicting nonstationary flood frequencies: Evidence supports an updated stationarity thesis in the United States.WATER RESOURCES RESEARCH,53(7).
MLA Luke, Adam,et al."Predicting nonstationary flood frequencies: Evidence supports an updated stationarity thesis in the United States".WATER RESOURCES RESEARCH 53.7(2017).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Luke, Adam]的文章
[Vrugt, Jasper A.]的文章
[AghaKouchak, Amir]的文章
百度学术
百度学术中相似的文章
[Luke, Adam]的文章
[Vrugt, Jasper A.]的文章
[AghaKouchak, Amir]的文章
必应学术
必应学术中相似的文章
[Luke, Adam]的文章
[Vrugt, Jasper A.]的文章
[AghaKouchak, Amir]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。