Global S&T Development Trend Analysis Platform of Resources and Environment
DOI | 10.5194/acp-17-8509-2017 |
The effect of hydroxyl functional groups and molar mass on the viscosity of non-crystalline organic and organic-water particles | |
Grayson, James W.1; Evoy, Erin1; Song, Mijung1,7; Chu, Yangxi2; Maclean, Adrian1; Nguyen, Allena1; Upshur, Mary Alice3; Ebrahimi, Marzieh4; Chan, Chak K.2,5,6; Geiger, Franz M.3; Thomson, Regan J.3; Bertram, Allan K.1 | |
2017-07-13 | |
发表期刊 | ATMOSPHERIC CHEMISTRY AND PHYSICS
![]() |
ISSN | 1680-7316 |
EISSN | 1680-7324 |
出版年 | 2017 |
卷号 | 17期号:13 |
文章类型 | Article |
语种 | 英语 |
国家 | Canada; Peoples R China; USA; South Korea |
英文摘要 | The viscosities of three polyols and three saccharides, all in the non-crystalline state, have been studied. Two of the polyols (2-methyl-1,4-butanediol and 1,2,3-butanetriol) were studied under dry conditions, the third (1,2,3,4-butanetetrol) was studied as a function of relative humidity (RH), including under dry conditions, and the saccharides (glucose, raffinose, and maltohexaose) were studied as a function of RH. The mean viscosities of the polyols under dry conditions range from 1.5 x 10(-1) to 3.7 x 10(1) Pa s, with the highest viscosity being that of the tetrol. Using a combination of data determined experimentally here and literature data for alkanes, alcohols, and polyols with a C-3 to C-6 carbon backbone, we show (1) there is a near-linear relationship between log(10) (viscosity) and the number of hydroxyl groups in the molecule, (2) that on average the addition of one OH group increases the viscosity by a factor of approximately 22 to 45, (3) the sensitivity of viscosity to the addition of one OH group is not a strong function of the number of OH functional groups already present in the molecule up to three OH groups, and (4) higher sensitivities are observed when the molecule has more than three OH groups. Viscosities reported here for 1,2,3,4-butanetetrol particles are lower than previously reported measurements using aerosol optical tweezers, and additional studies are required to resolve these discrepancies. For saccharide particles at 30% RH, viscosity increases by approximately 25 orders of magnitude as molar mass increases from 180 to 342 g mol(-1), and at 80% RH, viscosity increases by approximately 4-5 orders of magnitude as molar mass increases from 180 to 991 g mol(-1). These results suggest oligomerization of highly oxidized compounds in atmospheric secondary organic aerosol (SOA) could lead to large increases in viscosity, and may be at least partially responsible for the high viscosities observed in some SOA. Finally, two quantitative structure-property relationship models (Sastri and Rao, 1992; Marrero-Morejon and Pardillo-Fontdevila, 2000) were used to predict the viscosity of alkanes, alcohols, and polyols with a C-3-C-6 carbon backbone. Both models show reasonably good agreement with measured viscosities for the alkanes, alcohols, and polyols studied here except for the case of a hexol, the viscosity of which is underpredicted by 1-3 orders of magnitude by each of the models. |
领域 | 地球科学 |
收录类别 | SCI-E |
WOS记录号 | WOS:000405466800002 |
WOS关键词 | HETEROGENEOUS ICE NUCLEATION ; ALPHA-PINENE ; AEROSOL-PARTICLES ; ATMOSPHERIC AEROSOLS ; CHEMICAL-COMPOSITION ; SOA PARTICLES ; PHASE STATE ; KINETIC LIMITATIONS ; AMBIENT-TEMPERATURE ; VISCOUS PROPERTIES |
WOS类目 | Environmental Sciences ; Meteorology & Atmospheric Sciences |
WOS研究方向 | Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.173/C666/handle/2XK7JSWQ/21731 |
专题 | 地球科学 |
作者单位 | 1.Univ British Columbia, Dept Chem, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada; 2.Hong Kong Univ Sci & Technol, Div Environm & Sustainabil, Kowloon, Hong Kong, Peoples R China; 3.Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA; 4.Univ British Columbia, Dept Chem & Biol Engn, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada; 5.Hong Kong Univ Sci & Technol, Dept Chem & Biomol Engn, Kowloon, Hong Kong, Peoples R China; 6.City Univ Hong Kong, Sch Energy & Environm, Tat Chee Ave, Kowloon, Hong Kong, Peoples R China; 7.Chonbuk Natl Univ, Dept Earth & Environm Sci, Jeollabuk Do, South Korea |
推荐引用方式 GB/T 7714 | Grayson, James W.,Evoy, Erin,Song, Mijung,et al. The effect of hydroxyl functional groups and molar mass on the viscosity of non-crystalline organic and organic-water particles[J]. ATMOSPHERIC CHEMISTRY AND PHYSICS,2017,17(13). |
APA | Grayson, James W..,Evoy, Erin.,Song, Mijung.,Chu, Yangxi.,Maclean, Adrian.,...&Bertram, Allan K..(2017).The effect of hydroxyl functional groups and molar mass on the viscosity of non-crystalline organic and organic-water particles.ATMOSPHERIC CHEMISTRY AND PHYSICS,17(13). |
MLA | Grayson, James W.,et al."The effect of hydroxyl functional groups and molar mass on the viscosity of non-crystalline organic and organic-water particles".ATMOSPHERIC CHEMISTRY AND PHYSICS 17.13(2017). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论