GSTDTAP  > 地球科学
New model shows how crop rotation helps combat plant pests
admin
2020-01-16
发布年2020
语种英语
国家美国
领域地球科学
正文(英文)
IMAGE

IMAGE: Crops being managed in crop rotation. view more 

Credit: USDA NRCS Texas

A new computational model shows how different patterns of crop rotation--planting different crops at different times in the same field--can impact long-term yield when the crops are threatened by plant pathogens. Maria Bargués-Ribera and Chaitanya Gokhale of the Max Planck Institute for Evolutionary Biology in Germany present the model in PLOS Computational Biology.

The continual evolution of plant pathogens poses a threat to agriculture worldwide. Previous research has shown that crop rotation can help improve pest control and soil quality. Other research shows that switching the environment in which a pathogen grows can limit its reproduction and change its evolution. However, these two concepts have been rarely studied together from an evolutionary point of view.

To better understand how crop rotation can protect against pests, Bargués-Ribera and Gokhale developed a computational model of the technique that integrates evolutionary theory. They used the model to investigate a scenario in which cash crops (grown for profit) and cover crops (grown to benefit soil) are alternated, but are affected by a pathogen that only attacks the cash crops.

The analysis identified which patterns of crop rotation maximize crop yield over multiple decades under the given scenario, revealing that regular rotations that switch every other year may not be optimal. The findings suggest that the long-term outcome of crop rotation depends on its ability to both maintain soil quality and diminish pathogen load during harvesting seasons.

"Our model is an example of how evolutionary theory can complement farmers' knowledge," Bargués-Ribera says. "In a world with ever increasing food demand, ecological and evolutionary principles can be leveraged to design strategies making agriculture efficient and sustainable."

Future research could apply the new model to specific species to assess crop rotation patterns for specific crops and their pests. The model could also be used to help study the combined effects of crop rotation and other pest control techniques, such as fungicides and use of crops that have been genetically modified for pest resistance.

###

In your coverage please use this URL to provide access to the freely available article in PLOS Computational Biology: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007546

Citation: Bargués-Ribera M, Gokhale CS (2020) Eco-evolutionary agriculture: Host-pathogen dynamics in crop rotations. PLoS Comput Biol 16(1): e1007546. https://doi.org/10.1371/journal.pcbi.1007546

Funding: The authors thank the generous funding from the Max Planck Society. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

URL查看原文
来源平台EurekAlert! - Earth Science
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/218345
专题地球科学
推荐引用方式
GB/T 7714
admin. New model shows how crop rotation helps combat plant pests. 2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。