Global S&T Development Trend Analysis Platform of Resources and Environment
DOI | 10.1002/2017WR020767 |
Making the most out of a hydrological model data set: Sensitivity analyses to open the model black-box | |
Borgonovo, E.1; Lu, X.1; Plischke, E.2; Rakovec, O.3; Hill, M. C.4 | |
2017-09-01 | |
发表期刊 | WATER RESOURCES RESEARCH
![]() |
ISSN | 0043-1397 |
EISSN | 1944-7973 |
出版年 | 2017 |
卷号 | 53期号:9 |
文章类型 | Article |
语种 | 英语 |
国家 | Italy; Germany; USA |
英文摘要 | In this work, we investigate methods for gaining greater insight from hydrological model runs conducted for uncertainty quantification and model differentiation. We frame the sensitivity analysis questions in terms of the main purposes of sensitivity analysis: parameter prioritization, trend identification, and interaction quantification. For parameter prioritization, we consider variance-based sensitivity measures, sensitivity indices based on the L-1-norm, the Kuiper metric, and the sensitivity indices of the DELSA methods. For trend identification, we investigate insights derived from graphing the one-way ANOVA sensitivity functions, the recently introduced CUSUNORO plots, and derivative scatterplots. For interaction quantification, we consider information delivered by variance-based sensitivity indices. We rely on the so-called given-data principle, in which results from a set of model runs are used to perform a defined set of analyses. One avoids using specific designs for each insight, thus controlling the computational burden. The methodology is applied to a hydrological model of a river in Belgium simulated using the well-established Framework for Understanding Structural Errors (FUSE) on five alternative configurations. The findings show that the integration of the chosen methods provides insights unavailable in most other analyses. |
英文关键词 | sensitivity analysis model parameters hydrological model uncertainty |
领域 | 资源环境 |
收录类别 | SCI-E |
WOS记录号 | WOS:000413484200025 |
WOS关键词 | GLOBAL SENSITIVITY ; MATHEMATICAL-MODELS ; UNCERTAINTY ; IDENTIFICATION ; INDEXES ; ROBUST ; NEED |
WOS类目 | Environmental Sciences ; Limnology ; Water Resources |
WOS研究方向 | Environmental Sciences & Ecology ; Marine & Freshwater Biology ; Water Resources |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.173/C666/handle/2XK7JSWQ/21903 |
专题 | 资源环境科学 |
作者单位 | 1.Bocconi Univ, Dept Decis Sci, Milan, Italy; 2.Tech Univ Clausthal, Clausthal Zellerfeld, Germany; 3.UFZ Helmholtz Ctr Environm Res, Leipzig, Germany; 4.Univ Kansas, Lawrence, KS 66045 USA |
推荐引用方式 GB/T 7714 | Borgonovo, E.,Lu, X.,Plischke, E.,et al. Making the most out of a hydrological model data set: Sensitivity analyses to open the model black-box[J]. WATER RESOURCES RESEARCH,2017,53(9). |
APA | Borgonovo, E.,Lu, X.,Plischke, E.,Rakovec, O.,&Hill, M. C..(2017).Making the most out of a hydrological model data set: Sensitivity analyses to open the model black-box.WATER RESOURCES RESEARCH,53(9). |
MLA | Borgonovo, E.,et al."Making the most out of a hydrological model data set: Sensitivity analyses to open the model black-box".WATER RESOURCES RESEARCH 53.9(2017). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论