GSTDTAP  > 资源环境科学
DOI10.1002/2017WR020767
Making the most out of a hydrological model data set: Sensitivity analyses to open the model black-box
Borgonovo, E.1; Lu, X.1; Plischke, E.2; Rakovec, O.3; Hill, M. C.4
2017-09-01
发表期刊WATER RESOURCES RESEARCH
ISSN0043-1397
EISSN1944-7973
出版年2017
卷号53期号:9
文章类型Article
语种英语
国家Italy; Germany; USA
英文摘要

In this work, we investigate methods for gaining greater insight from hydrological model runs conducted for uncertainty quantification and model differentiation. We frame the sensitivity analysis questions in terms of the main purposes of sensitivity analysis: parameter prioritization, trend identification, and interaction quantification. For parameter prioritization, we consider variance-based sensitivity measures, sensitivity indices based on the L-1-norm, the Kuiper metric, and the sensitivity indices of the DELSA methods. For trend identification, we investigate insights derived from graphing the one-way ANOVA sensitivity functions, the recently introduced CUSUNORO plots, and derivative scatterplots. For interaction quantification, we consider information delivered by variance-based sensitivity indices. We rely on the so-called given-data principle, in which results from a set of model runs are used to perform a defined set of analyses. One avoids using specific designs for each insight, thus controlling the computational burden. The methodology is applied to a hydrological model of a river in Belgium simulated using the well-established Framework for Understanding Structural Errors (FUSE) on five alternative configurations. The findings show that the integration of the chosen methods provides insights unavailable in most other analyses.


英文关键词sensitivity analysis model parameters hydrological model uncertainty
领域资源环境
收录类别SCI-E
WOS记录号WOS:000413484200025
WOS关键词GLOBAL SENSITIVITY ; MATHEMATICAL-MODELS ; UNCERTAINTY ; IDENTIFICATION ; INDEXES ; ROBUST ; NEED
WOS类目Environmental Sciences ; Limnology ; Water Resources
WOS研究方向Environmental Sciences & Ecology ; Marine & Freshwater Biology ; Water Resources
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/21903
专题资源环境科学
作者单位1.Bocconi Univ, Dept Decis Sci, Milan, Italy;
2.Tech Univ Clausthal, Clausthal Zellerfeld, Germany;
3.UFZ Helmholtz Ctr Environm Res, Leipzig, Germany;
4.Univ Kansas, Lawrence, KS 66045 USA
推荐引用方式
GB/T 7714
Borgonovo, E.,Lu, X.,Plischke, E.,et al. Making the most out of a hydrological model data set: Sensitivity analyses to open the model black-box[J]. WATER RESOURCES RESEARCH,2017,53(9).
APA Borgonovo, E.,Lu, X.,Plischke, E.,Rakovec, O.,&Hill, M. C..(2017).Making the most out of a hydrological model data set: Sensitivity analyses to open the model black-box.WATER RESOURCES RESEARCH,53(9).
MLA Borgonovo, E.,et al."Making the most out of a hydrological model data set: Sensitivity analyses to open the model black-box".WATER RESOURCES RESEARCH 53.9(2017).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Borgonovo, E.]的文章
[Lu, X.]的文章
[Plischke, E.]的文章
百度学术
百度学术中相似的文章
[Borgonovo, E.]的文章
[Lu, X.]的文章
[Plischke, E.]的文章
必应学术
必应学术中相似的文章
[Borgonovo, E.]的文章
[Lu, X.]的文章
[Plischke, E.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。