GSTDTAP  > 资源环境科学
DOI10.1002/2016WR019752
A platform for probabilistic Multimodel and Multiproduct Streamflow Forecasting
Roy, Tirthankar1; Serrat-Capdevila, Aleix1,2; Gupta, Hoshin1; Valdes, Juan1
2017
发表期刊WATER RESOURCES RESEARCH
ISSN0043-1397
EISSN1944-7973
出版年2017
卷号53期号:1
文章类型Article
语种英语
国家USA
英文摘要

We develop and test a probabilistic real-time streamflow-forecasting platform, Multimodel and Multiproduct Streamflow Forecasting (MMSF), that uses information provided by a suite of hydrologic models and satellite precipitation products (SPPs). The SPPs are bias-corrected before being used as inputs to the hydrologic models, and model calibration is carried out independently for each of the model-product combinations (MPCs). Forecasts generated from the calibrated models are further bias-corrected to compensate for the deficiencies within the models, and then probabilistically merged using a variety of model averaging techniques. Use of bias-corrected SPPs in streamflow forecasting applications can overcome several issues associated with sparsely gauged basins and enable robust forecasting capabilities. Bias correction of streamflow significantly improves the forecasts in terms of accuracy and precision for all different cases considered. Results show that the merging of individual forecasts from different MPCs provides additional improvements. All the merging techniques applied in this study produce similar results, however, the Inverse Weighted Averaging (IVA) proves to be slightly superior in most cases. We demonstrate the implementation of the MMSF platform for real-time streamflow monitoring and forecasting in the Mara River basin of Africa (Kenya & Tanzania) in order to provide improved monitoring and forecasting tools to inform water management decisions.


英文关键词streamflow forecasting satellite precipitation products bias correction model averaging uncertainty analysis real-time monitoring MMSF
领域资源环境
收录类别SCI-E
WOS记录号WOS:000394911200023
WOS关键词SATELLITE PRECIPITATION DATA ; HYDROLOGIC MODEL ; BIAS-CORRECTION ; MAXIMUM-LIKELIHOOD ; ROUTING MODEL ; ANALYSIS TMPA ; MARA RIVER ; RAINFALL ; PRODUCTS ; ERROR
WOS类目Environmental Sciences ; Limnology ; Water Resources
WOS研究方向Environmental Sciences & Ecology ; Marine & Freshwater Biology ; Water Resources
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/21921
专题资源环境科学
作者单位1.Univ Arizona, Dept Hydrol & Atmospher Sci, Tucson, AZ 85721 USA;
2.World Bank, Water Global Practice, 1818 H St NW, Washington, DC 20433 USA
推荐引用方式
GB/T 7714
Roy, Tirthankar,Serrat-Capdevila, Aleix,Gupta, Hoshin,et al. A platform for probabilistic Multimodel and Multiproduct Streamflow Forecasting[J]. WATER RESOURCES RESEARCH,2017,53(1).
APA Roy, Tirthankar,Serrat-Capdevila, Aleix,Gupta, Hoshin,&Valdes, Juan.(2017).A platform for probabilistic Multimodel and Multiproduct Streamflow Forecasting.WATER RESOURCES RESEARCH,53(1).
MLA Roy, Tirthankar,et al."A platform for probabilistic Multimodel and Multiproduct Streamflow Forecasting".WATER RESOURCES RESEARCH 53.1(2017).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Roy, Tirthankar]的文章
[Serrat-Capdevila, Aleix]的文章
[Gupta, Hoshin]的文章
百度学术
百度学术中相似的文章
[Roy, Tirthankar]的文章
[Serrat-Capdevila, Aleix]的文章
[Gupta, Hoshin]的文章
必应学术
必应学术中相似的文章
[Roy, Tirthankar]的文章
[Serrat-Capdevila, Aleix]的文章
[Gupta, Hoshin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。