Global S&T Development Trend Analysis Platform of Resources and Environment
DOI | 10.1007/s00382-017-3652-7 |
More reliable coastal SST forecasts from the North American multimodel ensemble | |
Hervieux, G.1,2; Alexander, M. A.2; Stock, C. A.3; Jacox, M. G.4,5; Pegion, K.6; Becker, E.7,8; Castruccio, F.9; Tommasi, D.10 | |
2019-12-01 | |
发表期刊 | CLIMATE DYNAMICS
![]() |
ISSN | 0930-7575 |
EISSN | 1432-0894 |
出版年 | 2019 |
卷号 | 53期号:12页码:7153-7168 |
文章类型 | Article |
语种 | 英语 |
国家 | USA |
英文摘要 | The skill of monthly sea surface temperature (SST) anomaly predictions for large marine ecosystems (LMEs) in coastal regions of the United States and Canada is assessed using simulations from the climate models in the North American Multimodel Ensemble (NMME). The forecasts based on the full ensemble are generally more skillful than predictions from even the best single model. The improvement in skill is particularly noteworthy for probability forecasts that categorize SST anomalies into upper (warm) and lower (cold) terciles. The ensemble provides a better estimate of the full range of forecast values than any individual model, thereby correcting for the systematic over-confidence (under-dispersion) of predictions from an individual model. Probability forecasts, including tercile predictions from the NMME, are used frequently in seasonal forecasts for atmospheric variables and may have many uses in marine resource management. |
英文关键词 | Seasonal prediction SST anomaly Coastal ecosystems Climate models Multimodel ensemble forecast |
领域 | 气候变化 |
收录类别 | SCI-E |
WOS记录号 | WOS:000495247200002 |
WOS关键词 | TO-INTERANNUAL PREDICTION ; ENSO PREDICTION ; SEASONAL FORECASTS ; OCEAN ; SKILL ; MODEL ; INITIALIZATION ; FISHERIES ; SYSTEM |
WOS类目 | Meteorology & Atmospheric Sciences |
WOS研究方向 | Meteorology & Atmospheric Sciences |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.173/C666/handle/2XK7JSWQ/224284 |
专题 | 环境与发展全球科技态势 |
作者单位 | 1.Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA; 2.NOAA, Earth Syst Res Lab, Phys Sci Div, 325 Broadway R PSD1, Boulder, CO 80305 USA; 3.Princeton Univ, NOAA, Geophys Fluid Dynam Lab, Forrestal Campus,201 Forrestal Rd, Princeton, NJ 08540 USA; 4.Univ Calif Santa Cruz, Inst Marine Sci, Santa Cruz, CA 95064 USA; 5.NOAA, Southwest Fisheries Sci Ctr, Environm Res Div, 99 Pacific St,Ste 255A, Monterey, CA 93940 USA; 6.George Mason Univ, Dept Atmospher Ocean & Earth Sci, 4400 Univ Dr,MS6C5, Fairfax, VA 22030 USA; 7.NOAA, Climate Predict Ctr, 5830 Univ Res Court, College Pk, MD 20740 USA; 8.INNOVIM LLC, 5830 Univ Res Court, College Pk, MD 20740 USA; 9.NCAR, Climate & Global Dynam, 1850 Table Mesa Dr, Boulder, CO 80305 USA; 10.Princeton Univ, Atmospher & Ocean Sci Program, 300 Forrestal Rd,Sayre Hall, Princeton, NJ 08544 USA |
推荐引用方式 GB/T 7714 | Hervieux, G.,Alexander, M. A.,Stock, C. A.,et al. More reliable coastal SST forecasts from the North American multimodel ensemble[J]. CLIMATE DYNAMICS,2019,53(12):7153-7168. |
APA | Hervieux, G..,Alexander, M. A..,Stock, C. A..,Jacox, M. G..,Pegion, K..,...&Tommasi, D..(2019).More reliable coastal SST forecasts from the North American multimodel ensemble.CLIMATE DYNAMICS,53(12),7153-7168. |
MLA | Hervieux, G.,et al."More reliable coastal SST forecasts from the North American multimodel ensemble".CLIMATE DYNAMICS 53.12(2019):7153-7168. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论