GSTDTAP
DOI10.1029/2019JD030823
Can Convection-Permitting Modeling Provide Decent Precipitation for Offline High-Resolution Snowpack Simulations Over Mountains?
He, Cenlin1,2; Chen, Fei2; Barlage, Michael2; Liu, Changhai2; Newman, Andrew2; Tang, Wenfu3; Ikeda, Kyoko2; Rasmussen, Roy2
2019-12-16
发表期刊JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
ISSN2169-897X
EISSN2169-8996
出版年2019
卷号124期号:23页码:12631-12654
文章类型Article
语种英语
国家USA
英文摘要

Accurate precipitation estimates are critical to simulating seasonal snowpack evolution. We conduct and evaluate high-resolution (4-km) snowpack simulations over the western United States (WUS) mountains in Water Year 2013 using the Noah with multi-parameterization (Noah-MP) land surface model driven by precipitation forcing from convection-permitting (4-km) Weather Research and Forecasting (WRF) modeling and four widely used high-resolution datasets that are derived from statistical interpolation based on in situ measurements. Substantial differences in the precipitation amount among these five datasets, particularly over the western and northern portions of WUS mountains, significantly affect simulated snow water equivalent (SWE) and snow depth (SD) but have relatively limited effects on snow cover fraction (SCF) and surface albedo. WRF generally captures observed precipitation patterns and results in an overall best-performed SWE and SD in the western and northern portions of WUS mountains, where the statistically interpolated datasets lead to underpredicted precipitation, SWE, and SD. Over the interior WUS mountains, all the datasets consistently underestimate precipitation, causing significant negative biases in SWE and SD, among which the results driven by the WRF precipitation show an average performance. Further analysis reveals systematic positive biases in SCF and surface albedo across the WUS mountains, with similar bias patterns and magnitudes for simulations driven by different precipitation datasets, suggesting an urgent need to improve the Noah-MP snowpack physics. This study highlights that convection-permitting modeling with proper configurations can have added values in providing decent precipitation for high-resolution snowpack simulations over the WUS mountains in a typical ENSO-neutral year, particularly over observation-scarce regions.


领域气候变化
收录类别SCI-E
WOS记录号WOS:000505626200015
WOS关键词WESTERN UNITED-STATES ; WATER EQUIVALENT ; OROGRAPHIC PRECIPITATION ; INDEPENDENT EVALUATION ; ROCKY-MOUNTAINS ; SIERRA-NEVADA ; GRAIN SHAPE ; CLIMATE ; ALBEDO ; SENSITIVITY
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/225897
专题环境与发展全球科技态势
作者单位1.Natl Ctr Atmospher Res, Adv Study Program, POB 3000, Boulder, CO 80307 USA;
2.Natl Ctr Atmospher Res, Res Applicat Lab, POB 3000, Boulder, CO 80307 USA;
3.Univ Arizona, Dept Hydrol & Atmospher Sci, Tucson, AZ USA
推荐引用方式
GB/T 7714
He, Cenlin,Chen, Fei,Barlage, Michael,et al. Can Convection-Permitting Modeling Provide Decent Precipitation for Offline High-Resolution Snowpack Simulations Over Mountains?[J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES,2019,124(23):12631-12654.
APA He, Cenlin.,Chen, Fei.,Barlage, Michael.,Liu, Changhai.,Newman, Andrew.,...&Rasmussen, Roy.(2019).Can Convection-Permitting Modeling Provide Decent Precipitation for Offline High-Resolution Snowpack Simulations Over Mountains?.JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES,124(23),12631-12654.
MLA He, Cenlin,et al."Can Convection-Permitting Modeling Provide Decent Precipitation for Offline High-Resolution Snowpack Simulations Over Mountains?".JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES 124.23(2019):12631-12654.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[He, Cenlin]的文章
[Chen, Fei]的文章
[Barlage, Michael]的文章
百度学术
百度学术中相似的文章
[He, Cenlin]的文章
[Chen, Fei]的文章
[Barlage, Michael]的文章
必应学术
必应学术中相似的文章
[He, Cenlin]的文章
[Chen, Fei]的文章
[Barlage, Michael]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。