GSTDTAP  > 资源环境科学
DOI10.1289/EHP2998
Conditional Toxicity Value (CTV) Predictor: An In Silico Approach for Generating Quantitative Risk Estimates for Chemicals
Wignall, Jessica A.1; Muratov, Eugene2; Sedykh, Alexander2,5; Guyton, Kathryn Z.3; Tropsha, Alexander2; Rusyn, Ivan4; Chiu, Weihsueh A.4
2018-05-01
发表期刊ENVIRONMENTAL HEALTH PERSPECTIVES
ISSN0091-6765
EISSN1552-9924
出版年2018
卷号126期号:5
文章类型Article
语种英语
国家USA; France
英文摘要

BACKGROUND: Human health assessments synthesize human, animal, and mechanistic data to produce toxicity values that are key inputs to risk-based decision making. Traditional assessments are data-, time-, and resource-intensive, and they cannot be developed for most environmental chemicals owing to a lack of appropriate data.


OBJECTIVES: As recommended by the National Research Council, we propose a solution for predicting toxicity values for data-poor chemicals through development of quantitative structure-activity relationship (QSAR) models.


METHODS: We used a comprehensive database of chemicals with existing regulatory toxicity values from U.S. federal and state agencies to develop quantitative QSAR models. We compared QSAR-based model predictions to those based on high-throughput screening (HTS) assays.


RESULTS: QSAR models for noncancer threshold-based values and cancer slope factors had cross-validation-based Q(2) of 0.25-0.45, mean model errors of 0.70-1.11 log(10) units, and applicability domains covering > 80% of environmental chemicals. Toxicity values predicted from QSAR models developed in this study were more accurate and precise than those based on HTS assays or mean-based predictions. A publicly accessible web interface to make predictions for any chemical of interest is available at http://toxvalue. org.


CONCLUSIONS: An in silico tool that can predict toxicity values with an uncertainty of an order of magnitude or less can be used to quickly and quantitatively assess risks of environmental chemicals when traditional toxicity data or human health assessments are unavailable. This tool can fill a critical gap in the risk assessment and management of data-poor chemicals.


领域资源环境
收录类别SCI-E
WOS记录号WOS:000433628200003
WOS关键词HEALTH REFERENCE VALUES ; ESTROGEN-RECEPTOR ; QSAR TOOLBOX ; READ-ACROSS ; DESCRIPTORS ; FRAMEWORK ; SCIENCE ; MODELS ; CLASSIFICATION ; BIOACTIVITY
WOS类目Environmental Sciences ; Public, Environmental & Occupational Health ; Toxicology
WOS研究方向Environmental Sciences & Ecology ; Public, Environmental & Occupational Health ; Toxicology
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/22963
专题资源环境科学
作者单位1.ICF, Fairfax, VA USA;
2.Univ N Carolina, Eshelman Sch Pharm, Div Chem Biol & Med Chem, Lab Mol Modeling, Chapel Hill, NC 27515 USA;
3.World Hlth Org, Monog Sect, Int Agcy Res Canc, Lyon, France;
4.Texas A&M Univ, Coll Vet Med & Biomed Sci, Dept Vet Integrat Biosci, College Stn, TX USA;
5.SciOme LLC, Res Triangle Pk, NC USA
推荐引用方式
GB/T 7714
Wignall, Jessica A.,Muratov, Eugene,Sedykh, Alexander,et al. Conditional Toxicity Value (CTV) Predictor: An In Silico Approach for Generating Quantitative Risk Estimates for Chemicals[J]. ENVIRONMENTAL HEALTH PERSPECTIVES,2018,126(5).
APA Wignall, Jessica A..,Muratov, Eugene.,Sedykh, Alexander.,Guyton, Kathryn Z..,Tropsha, Alexander.,...&Chiu, Weihsueh A..(2018).Conditional Toxicity Value (CTV) Predictor: An In Silico Approach for Generating Quantitative Risk Estimates for Chemicals.ENVIRONMENTAL HEALTH PERSPECTIVES,126(5).
MLA Wignall, Jessica A.,et al."Conditional Toxicity Value (CTV) Predictor: An In Silico Approach for Generating Quantitative Risk Estimates for Chemicals".ENVIRONMENTAL HEALTH PERSPECTIVES 126.5(2018).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wignall, Jessica A.]的文章
[Muratov, Eugene]的文章
[Sedykh, Alexander]的文章
百度学术
百度学术中相似的文章
[Wignall, Jessica A.]的文章
[Muratov, Eugene]的文章
[Sedykh, Alexander]的文章
必应学术
必应学术中相似的文章
[Wignall, Jessica A.]的文章
[Muratov, Eugene]的文章
[Sedykh, Alexander]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。