GSTDTAP  > 气候变化
DOI10.1016/j.foreco.2017.10.007
Synergistic use of Landsat 8 OLI image and airborne LiDAR data for above-ground biomass estimation in tropical lowland rainforests
Phua, Mui-How1; Johari, Shazrul Azwan1; Wong, Ong Cieh1; Ioki, Keiko1; Mahali, Maznah1; Nilus, Reuben2; Coomes, David A.3; Maycock, Colin R.1; Hashim, Mazlan4
2017-12-15
发表期刊FOREST ECOLOGY AND MANAGEMENT
ISSN0378-1127
EISSN1872-7042
出版年2017
卷号406
文章类型Article
语种英语
国家Malaysia; England
英文摘要

Developing a robust and cost-effective method for accurately estimating tropical forest's carbon pool over large area is a fundamental requirement for the implementation of Reducing Emissions from Deforestation and forest Degradation (REDD +). This study aims at examining the independent and combined use of airborne LiDAR and Landsat 8 Operational Land Imager (OLI) data to accurately estimate the above-ground biomass (AGB) of primary tropical rainforests in Sabah, Malaysia. Thirty field plots were established in three types of lowland rainforests: alluvial, sandstone hill and heath forests that represent a wide range of AGB density and stand structure. We derived the height percentile and laser penetration variables from the airborne LiDAR and calculated the vegetation indices, tasseled cap transformation values, and the texture measures from Landsat 8 OLI data. We found that there are moderate correlations between the AGB and laser penetration variables from airborne LiDAR data (r = -0.411 to -0.790). For Landsat 8 OLI data, the 6 vegetation indices and the 46 texture measures also significantly correlated with the AGB (r = 0.366-0.519). Stepwise multiple regression analysis was performed to establish the estimation models for independent and combined use of airborne LiDAR and Landsat 8 OLI data. The results showed that the model based on a combination of the two remote sensing data achieved the highest accuracy (R-adj(2) = 0.81, RMSE = 17.36%) whereas the models using Landsat 8 OLI data airborne LiDAR data independently obtained the moderate accuracy (R-adj(2) = 0.52, RMSE = 24.22% and R-adj(2) = 0.63, RMSE = 25.25%, respectively). Our study indicated that texture measures from Landsat 8 OLI data provided useful information for AGB estimation and synergistic use of Landsat 8 OLI and airborne LiDAR data could improve the AGB estimation of primary tropical rainforest.


英文关键词Tropical forest Above-ground biomass Landsat 8 OLI Airborne LiDAR Borneo REDD
领域气候变化
收录类别SCI-E
WOS记录号WOS:000416395800017
WOS关键词REMOTE-SENSING DATA ; TREE COMMUNITY COMPOSITION ; LEAF-AREA INDEX ; TM DATA ; VEGETATION INDEXES ; BRAZILIAN AMAZON ; WOOD DENSITY ; TANDEM-X ; CARBON ; TEXTURE
WOS类目Forestry
WOS研究方向Forestry
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/23130
专题气候变化
作者单位1.Univ Malaysia Sabah, Forestry Complex, Fac Sci & Nat Resources, Sabah, Malaysia;
2.Sabah Forestry Dept, Forest Res Ctr, POB 1407, Sandakan 90715, Sabah, Malaysia;
3.Univ Cambridge, Dept Plant Sci, Downing St, Cambridge CB2 3EA, England;
4.Univ Teknol Malaysia, Res Inst Sustainable Environm, Skudai 91310, Johor Bahru, Malaysia
推荐引用方式
GB/T 7714
Phua, Mui-How,Johari, Shazrul Azwan,Wong, Ong Cieh,et al. Synergistic use of Landsat 8 OLI image and airborne LiDAR data for above-ground biomass estimation in tropical lowland rainforests[J]. FOREST ECOLOGY AND MANAGEMENT,2017,406.
APA Phua, Mui-How.,Johari, Shazrul Azwan.,Wong, Ong Cieh.,Ioki, Keiko.,Mahali, Maznah.,...&Hashim, Mazlan.(2017).Synergistic use of Landsat 8 OLI image and airborne LiDAR data for above-ground biomass estimation in tropical lowland rainforests.FOREST ECOLOGY AND MANAGEMENT,406.
MLA Phua, Mui-How,et al."Synergistic use of Landsat 8 OLI image and airborne LiDAR data for above-ground biomass estimation in tropical lowland rainforests".FOREST ECOLOGY AND MANAGEMENT 406(2017).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Phua, Mui-How]的文章
[Johari, Shazrul Azwan]的文章
[Wong, Ong Cieh]的文章
百度学术
百度学术中相似的文章
[Phua, Mui-How]的文章
[Johari, Shazrul Azwan]的文章
[Wong, Ong Cieh]的文章
必应学术
必应学术中相似的文章
[Phua, Mui-How]的文章
[Johari, Shazrul Azwan]的文章
[Wong, Ong Cieh]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。