GSTDTAP  > 资源环境科学
The ocean’s ‘biological pump’ captures more carbon than expected
admin
2020-04-06
发布年2020
语种英语
国家美国
领域资源环境
正文(英文)
Buesseler sediment trap Marine chemist Ken Buesseler (right) deploys a sediment trap from the research vessel Roger Revelle during a 2018 expedition in the Gulf of Alaska. Buesseler’s research focuses on how carbon moves through the ocean. Buesseler and co-authors of a new study found that the ocean’s biological carbon pump may be twice as efficient as previously estimated, with implications for future climate assessments. (Photo by Alyson Santoro, © Woods Hole Oceanographic Institution)

April 6, 2020

Scientists have long known that the ocean plays an essential role in capturing carbon from the atmosphere, but a new study shows that the efficiency of the ocean’s “biological carbon pump” has been drastically underestimated. (Video by Elise Hugus, UnderCurrent Productions, © Woods Hole Oceanographic Institution)

Every spring in the Northern Hemisphere, the ocean surface erupts in a massive bloom of phytoplankton. Like plants, these single-celled floating organisms use photosynthesis to turn light into energy, consuming carbon dioxide and releasing oxygen in the process. When phytoplankton die or are eaten by zooplankton, the carbon-rich fragments sinks deeper into the ocean, where it is, in turn, eaten by other creatures or buried in sediments. This process is key to the “biological carbon pump,” an important part of the global carbon cycle.

Scientists have long known that the ocean plays an essential role in capturing carbon from the atmosphere, but a new study from Woods Hole Oceanographic Institution (WHOI) shows that the efficiency of the ocean’s “biological carbon pump” has been drastically underestimated, with implications for future climate assessments.

In a paper published April 6 in Proceedings of the National Academy of Sciences, WHOI geochemist Ken Buesseler and colleagues demonstrated that the depth of the sunlit area where photosynthesis occurs varies significantly throughout the ocean. This matters because the phytoplankton’s ability to take up carbon depends on amount of sunlight that’s able to penetrate the ocean’s upper layer. By taking account of the depth of the euphotic, or sunlit zone, the authors found that about twice as much carbon sinks into the ocean per year than previously estimated.

The paper relies on previous studies of the carbon pump, including the authors’ own. “If you look at the same data in a new way, you get a very different view of the ocean’s role in processing carbon, hence its role in regulating climate,” says Buesseler.

“Using the new metrics, we will be able to refine the models to not just tell us how the ocean looks today, but how it will look in the future,” he adds. “Is the amount of carbon sinking in the ocean going up or down? That number affects the climate of the world we live in.”

In the paper, Buesseler and his coauthors call on their fellow oceanographers to consider their data in context of  the actual boundary of the euphotic zone.

“If we’re going to call something a euphotic zone, we need to define that,” he says. “So we’re insisting on a more formal definition so that we can compare sites.”

Rather than taking measurements at fixed depths, the authors used chlorophyll sensors —indicating the presence of phytoplankton— to rapidly assess the depth of the sunlit region. They also suggest using the signature from a naturally-occuring thorium isotope to estimate the rate at which carbon particles are sinking.

Buesseler is a principal investigator with WHOI’s Ocean Twilight Zone project, which focuses on the little-understood but vastly important mid-ocean region. In a commentary published in Nature on March 31, Buesseler and colleagues call on the international marine research community to intensify their studies of the twilight zone during the upcoming United Nations Decade of the Ocean (2021-2030). Increased understanding of the twilight zone ecosystem and its role in regulating climate, the authors say, will lead to global policy to protect the area from exploitation.

Coauthors of the paper include: Phillip Boyd of University of Tasmania, Australia; Erin Black of Dalhousie University, Nova Scotia, and Lamont Doherty Earth Observatory, New York; and David Siegel, University of California, Santa Barbara.

This work was funded by: WHOI’s Ocean Twilight Zone project; NASA as part of the EXport Processes in the global Ocean from RemoTe Sensing (EXPORTS) program; the Ocean Frontier Institute at Dalhousie University; and the Australian Research Council.

Woods Hole Oceanographic Institution is a private, non-profit organization on Cape Cod, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the ocean and its interaction with the Earth as a whole, and to communicate a basic understanding of the ocean’s role in the changing global environment. For more information, please visit www.whoi.edu.

Marine chemist Ken Buesseler (right) deploys a sediment trap from the research vessel Roger Revelle during a 2018 expedition in the Gulf of Alaska. Buesseler's research focuses on how carbon moves through the ocean. Buesseler and co-authors of a new study found that the ocean's biological carbon pump may be twice as efficient as previously estimated, with implications for future climate assessments. (Photo by Alyson Santoro, © Woods Hole Oceanographic Institution)
URL查看原文
来源平台Woods Hole Oceanographic Institution
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/232635
专题资源环境科学
推荐引用方式
GB/T 7714
admin. The ocean’s ‘biological pump’ captures more carbon than expected. 2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。