GSTDTAP  > 地球科学
Seahorse and pipefish study by CCNY opens window to marine genetic diversity May 08, 2020
admin
2020-05-08
发布年2020
语种英语
国家美国
领域地球科学
正文(英文)

The direction of ocean currents can determine the direction of gene flow in rafting species, but this depends on species traits that allow for rafting propensity. This is according to a City College of New York study focusing on seahorse and pipefish species. And it could explain how high genetic diversity can contribute to extinction in small populations.

Published in the British-based journal "Proceedings of the Royal Society B," the paper by City College scientists led by Michael Hickerson and Laura Bertola is entitled: "Asymmetrical gene flow in five co-distributed syngnathids explained by ocean currents and rafting propensity."

It reveals that ocean circulation driving macro-algal rafting is believed to serve as an important mode of dispersal for many marine organisms. This leads to predictions on population-level genetic connectivity and the directionality of effective dispersal.

The CCNY Division of Sciences researchers used genome-wide single nucleotide polymorphism data to investigate whether gene flow directionality in two seahorses (Hippocampus) and three pipefishes (Syngnathus) follows the predominant ocean circulation patterns in the Gulf of Mexico and northwestern Atlantic. They also explored whether gene flow magnitudes are predicted by traits related to active dispersal ability and habitat preference.

"We inferred demographic histories of these co-distributed syngnathid species, and coalescent model-based estimates indicate that gene flow directionality is in agreement with ocean circulation data that predicts eastward and northward macro-algal transport," said Hickerson. "However, the magnitude to which ocean currents influence this pattern appears strongly dependent on the species-specific traits related to rafting propensity and habitat preferences."

The study, he said, highlights how the combination of population genomic inference together with ocean circulation data can help explain patterns of population structure and diversity in marine ecosystems.

###

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

URL查看原文
来源平台EurekAlert! - Earth Science
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/248001
专题地球科学
推荐引用方式
GB/T 7714
admin. Seahorse and pipefish study by CCNY opens window to marine genetic diversity May 08, 2020. 2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。