Global S&T Development Trend Analysis Platform of Resources and Environment
DOI | 10.1029/2019WR026853 |
Improving SWE Estimation With Data Assimilation: The Influence of Snow Depth Observation Timing and Uncertainty | |
Smyth, Eric J.1; Raleigh, Mark S.1,2,3; Small, Eric E.1 | |
2020-04-16 | |
发表期刊 | WATER RESOURCES RESEARCH
![]() |
ISSN | 0043-1397 |
EISSN | 1944-7973 |
出版年 | 2020 |
卷号 | 56期号:5 |
文章类型 | Article |
语种 | 英语 |
国家 | USA |
英文摘要 | Snow depth observations can be leveraged with data assimilation (DA) to improve estimation of snow density and snow water equivalent (SWE). A key consideration for mission and campaign design is how snow depth retrieval characteristics (including observation timing/frequency and sampling error) influence SWE accuracy and uncertainty in a DA framework. To quantify these effects, we implement a particle filter (PF) assimilation technique to assimilate depth and validate this approach against observed snow density and SWE at 49 snow telemetry sites across 9 years. We sample from continuous in situ snow depth records to test a range of measurement timing and sampling error scenarios representative of remote sensing capabilities. Assimilation reduces density bias by over 40% and SWE bias by over 70% across climate zones and in both wet and dry years. There is little incremental benefit to SWE accuracy when assimilating more than one depth observation near peak accumulation. SWE estimates are less sensitive to observation timing than sampling error. Alternatively, more frequent depth observations improve melt-out date timing and reduce SWE uncertainty, a key consideration when evaluating the operational utility of DA. In matching depth observations, the PF mostly acts to increase model precipitation inputs, while not systematically shifting other parameter values or forcings across the climate zones represented with the study sites. This demonstrates that precipitation is the largest source of model error. With DA, density errors are still nontrivial (above 10%), illuminating the need for further improvements to modeled density to estimate SWE within specified error limits. |
英文关键词 | SWE Assimilation Particle Filter Snow Depth Observation Timing Snow Density |
领域 | 资源环境 |
收录类别 | SCI-E |
WOS记录号 | WOS:000537736400027 |
WOS关键词 | WATER EQUIVALENT ; SCANNING LIDAR ; PRECIPITATION ; SIMULATIONS ; DENSITY ; IMPACT ; NETWORK ; ERROR ; POINT |
WOS类目 | Environmental Sciences ; Limnology ; Water Resources |
WOS研究方向 | Environmental Sciences & Ecology ; Marine & Freshwater Biology ; Water Resources |
URL | 查看原文 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.173/C666/handle/2XK7JSWQ/249204 |
专题 | 资源环境科学 |
作者单位 | 1.Univ Colorado, Dept Geol Sci, Boulder, CO 80309 USA; 2.Univ Colorado, Cooperat Inst Res Environm Sci CIRES, Boulder, CO 80309 USA; 3.Univ Colorado, Natl Snow & Ice Data Ctr NSIDC, Boulder, CO 80309 USA |
推荐引用方式 GB/T 7714 | Smyth, Eric J.,Raleigh, Mark S.,Small, Eric E.. Improving SWE Estimation With Data Assimilation: The Influence of Snow Depth Observation Timing and Uncertainty[J]. WATER RESOURCES RESEARCH,2020,56(5). |
APA | Smyth, Eric J.,Raleigh, Mark S.,&Small, Eric E..(2020).Improving SWE Estimation With Data Assimilation: The Influence of Snow Depth Observation Timing and Uncertainty.WATER RESOURCES RESEARCH,56(5). |
MLA | Smyth, Eric J.,et al."Improving SWE Estimation With Data Assimilation: The Influence of Snow Depth Observation Timing and Uncertainty".WATER RESOURCES RESEARCH 56.5(2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论