GSTDTAP  > 资源环境科学
DOI10.1029/2019WR026853
Improving SWE Estimation With Data Assimilation: The Influence of Snow Depth Observation Timing and Uncertainty
Smyth, Eric J.1; Raleigh, Mark S.1,2,3; Small, Eric E.1
2020-04-16
发表期刊WATER RESOURCES RESEARCH
ISSN0043-1397
EISSN1944-7973
出版年2020
卷号56期号:5
文章类型Article
语种英语
国家USA
英文摘要

Snow depth observations can be leveraged with data assimilation (DA) to improve estimation of snow density and snow water equivalent (SWE). A key consideration for mission and campaign design is how snow depth retrieval characteristics (including observation timing/frequency and sampling error) influence SWE accuracy and uncertainty in a DA framework. To quantify these effects, we implement a particle filter (PF) assimilation technique to assimilate depth and validate this approach against observed snow density and SWE at 49 snow telemetry sites across 9 years. We sample from continuous in situ snow depth records to test a range of measurement timing and sampling error scenarios representative of remote sensing capabilities. Assimilation reduces density bias by over 40% and SWE bias by over 70% across climate zones and in both wet and dry years. There is little incremental benefit to SWE accuracy when assimilating more than one depth observation near peak accumulation. SWE estimates are less sensitive to observation timing than sampling error. Alternatively, more frequent depth observations improve melt-out date timing and reduce SWE uncertainty, a key consideration when evaluating the operational utility of DA. In matching depth observations, the PF mostly acts to increase model precipitation inputs, while not systematically shifting other parameter values or forcings across the climate zones represented with the study sites. This demonstrates that precipitation is the largest source of model error. With DA, density errors are still nontrivial (above 10%), illuminating the need for further improvements to modeled density to estimate SWE within specified error limits.


英文关键词SWE Assimilation Particle Filter Snow Depth Observation Timing Snow Density
领域资源环境
收录类别SCI-E
WOS记录号WOS:000537736400027
WOS关键词WATER EQUIVALENT ; SCANNING LIDAR ; PRECIPITATION ; SIMULATIONS ; DENSITY ; IMPACT ; NETWORK ; ERROR ; POINT
WOS类目Environmental Sciences ; Limnology ; Water Resources
WOS研究方向Environmental Sciences & Ecology ; Marine & Freshwater Biology ; Water Resources
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/249204
专题资源环境科学
作者单位1.Univ Colorado, Dept Geol Sci, Boulder, CO 80309 USA;
2.Univ Colorado, Cooperat Inst Res Environm Sci CIRES, Boulder, CO 80309 USA;
3.Univ Colorado, Natl Snow & Ice Data Ctr NSIDC, Boulder, CO 80309 USA
推荐引用方式
GB/T 7714
Smyth, Eric J.,Raleigh, Mark S.,Small, Eric E.. Improving SWE Estimation With Data Assimilation: The Influence of Snow Depth Observation Timing and Uncertainty[J]. WATER RESOURCES RESEARCH,2020,56(5).
APA Smyth, Eric J.,Raleigh, Mark S.,&Small, Eric E..(2020).Improving SWE Estimation With Data Assimilation: The Influence of Snow Depth Observation Timing and Uncertainty.WATER RESOURCES RESEARCH,56(5).
MLA Smyth, Eric J.,et al."Improving SWE Estimation With Data Assimilation: The Influence of Snow Depth Observation Timing and Uncertainty".WATER RESOURCES RESEARCH 56.5(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Smyth, Eric J.]的文章
[Raleigh, Mark S.]的文章
[Small, Eric E.]的文章
百度学术
百度学术中相似的文章
[Smyth, Eric J.]的文章
[Raleigh, Mark S.]的文章
[Small, Eric E.]的文章
必应学术
必应学术中相似的文章
[Smyth, Eric J.]的文章
[Raleigh, Mark S.]的文章
[Small, Eric E.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。