GSTDTAP  > 地球科学
DOI10.1038/s41561-020-0561-x
Dry late accretion inferred from Venus's coupled atmosphere and internal evolution
Gillmann, C.1; Golabek, G. J.2; Raymond, S. N.3,4; Schonbachler, M.5; Tackley, P. J.5; Dehant, V.6,7; Debaille, V.1
2020-04-07
发表期刊NATURE GEOSCIENCE
ISSN1752-0894
EISSN1752-0908
出版年2020
卷号13期号:4页码:265-+
文章类型Article
语种英语
国家Belgium; Germany; France; Switzerland
英文摘要

It remains contentious whether the meteoritic material delivered to the terrestrial planets after the end of core formation was rich or poor in water and other volatiles. As Venus's atmosphere has probably experienced less volatile recycling over its history than Earth's, it may be possible to constrain the volatile delivery to the primitive Venusian atmosphere from the planet's present-day atmospheric composition. Here we investigate the long-term evolution of Venus using self-consistent numerical simulations of global thermochemical mantle convection coupled with both an atmospheric evolution model and a late accretion N-body delivery model. We found that atmospheric escape is only able to remove a limited amount of water over the history of the planet, and that the late accretion of wet material exceeds this sink and would result in a present-day atmosphere that is too rich in volatiles. A preferentially dry composition of the late accretion impactors is most consistent with measurements of atmospheric H2O, CO2 and N-2. Hence, we suggest that the late accreted material delivered to Venus was mostly dry enstatite chondrite, consistent with isotopic data for Earth, with less than 2.5% (by mass) wet carbonaceous chondrites. In this scenario, the majority of Venus's and Earth's water would have been delivered during the main accretion phase.


Venus's atmospheric composition suggests limited water delivery to the terrestrial planets by late accretion, according to numerical simulations of the interior and atmospheric evolution of Venus under various late accretion scenarios.


领域地球科学 ; 气候变化
收录类别SCI-E
WOS记录号WOS:000524633000001
WOS关键词HIGHLY SIDEROPHILE ELEMENTS ; TERRESTRIAL PLANETS ; HYDRODYNAMIC ESCAPE ; MASS FRACTIONATION ; SOLAR-ACTIVITY ; EARTHS MANTLE ; NOBLE-GASES ; LATE VENEER ; WATER-LOSS ; MARS
WOS类目Geosciences, Multidisciplinary
WOS研究方向Geology
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/249279
专题地球科学
气候变化
作者单位1.Univ Libre Bruxelles, Lab G Time, Brussels, Belgium;
2.Univ Bayreuth, Bayer Geoinst, Bayreuth, Germany;
3.CNRS, Lab Astrophys Bordeaux, Pessac, France;
4.Univ Bordeaux, Pessac, France;
5.Swiss Fed Inst Technol, Dept Earth Sci, Zurich, Switzerland;
6.Catholic Univ Louvain, Louvain La Neuve, Belgium;
7.Royal Observ Belgium, Brussels, Belgium
推荐引用方式
GB/T 7714
Gillmann, C.,Golabek, G. J.,Raymond, S. N.,et al. Dry late accretion inferred from Venus's coupled atmosphere and internal evolution[J]. NATURE GEOSCIENCE,2020,13(4):265-+.
APA Gillmann, C..,Golabek, G. J..,Raymond, S. N..,Schonbachler, M..,Tackley, P. J..,...&Debaille, V..(2020).Dry late accretion inferred from Venus's coupled atmosphere and internal evolution.NATURE GEOSCIENCE,13(4),265-+.
MLA Gillmann, C.,et al."Dry late accretion inferred from Venus's coupled atmosphere and internal evolution".NATURE GEOSCIENCE 13.4(2020):265-+.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gillmann, C.]的文章
[Golabek, G. J.]的文章
[Raymond, S. N.]的文章
百度学术
百度学术中相似的文章
[Gillmann, C.]的文章
[Golabek, G. J.]的文章
[Raymond, S. N.]的文章
必应学术
必应学术中相似的文章
[Gillmann, C.]的文章
[Golabek, G. J.]的文章
[Raymond, S. N.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。