Global S&T Development Trend Analysis Platform of Resources and Environment
DOI | 10.5194/acp-18-11261-2018 |
Summertime fine particulate nitrate pollution in the North China Plain: increasing trends, formation mechanisms and implications for control policy | |
Wen, Liang1; Xue, Likun1; Wang, Xinfeng1; Xu, Caihong1; Chen, Tianshu1; Yang, Lingxiao1; Wang, Tao2; Zhang, Qingzhu1; Wang, Wenxing1 | |
2018-08-13 | |
发表期刊 | ATMOSPHERIC CHEMISTRY AND PHYSICS
![]() |
ISSN | 1680-7316 |
EISSN | 1680-7324 |
出版年 | 2018 |
卷号 | 18期号:15页码:11261-11275 |
文章类型 | Article |
语种 | 英语 |
国家 | Peoples R China |
英文摘要 | Nitrate aerosol makes up a significant fraction of fine particles and plays a key role in regional air quality and climate. The North China Plain (NCP) is one of the most industrialized and polluted regions in China. To obtain a holistic understanding of the nitrate pollution and its formation mechanisms over the NCP region, intensive field observations were conducted at three sites during summertime in 2014-2015. The measurement sites include an urban site in downtown Jinan-the capital city of Shandong Province -, a rural site downwind of Jinan city, and a remote mountain site at Mt. Tai (1534 m a.s.l.). Elevated nitrate concentrations were observed at all three sites despite distinct temporal and spatial variations. Using historical observations, the nitrate / PM2.5 and nitrate / sulfate ratios have statistically significantly increased in Jinan (2005-2015) and at Mt. Tai (from 2007 to 2014), indicating the worsening situation of regional nitrate pollution. A multiphase chemical box model (RACM-CAPRAM) was deployed and constrained by observations to elucidate the nitrate formation mechanisms. The principal formation route is the partitioning of gaseous HNO3 to the aerosol phase during the day, whilst the nocturnal nitrate formation is dominated by the heterogeneous hydrolysis of N2O5. The daytime nitrate production in the NCP region is mainly limited by the availability of NO2 and to a lesser extent by O-3 and NH3. In comparison, the nighttime formation is controlled by both NO2 and O-3. The presence of NH3 contributes to the formation of nitrate aerosol during the day, while there is slightly decreasing nitrate formation at night. Our analyses suggest that controlling NOx and O-3 is an efficient way, at the moment, to mitigate nitrate pollution in the NCP region, where NH3 is usually in excess in summer. This study provides observational evidence of a rising trend of nitrate aerosol as well as scientific support for formulating effective control strategies for regional haze in China. |
领域 | 地球科学 |
收录类别 | SCI-E |
WOS记录号 | WOS:000441403800004 |
WOS关键词 | HETEROGENEOUS N2O5 UPTAKE ; NOCTURNAL RESIDUAL-LAYER ; WATER-SOLUBLE IONS ; MOUNT TAI ; RURAL SITE ; AMMONIUM AEROSOLS ; SURFACE OZONE ; PM2.5 ; CHEMISTRY ; JINAN |
WOS类目 | Environmental Sciences ; Meteorology & Atmospheric Sciences |
WOS研究方向 | Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.173/C666/handle/2XK7JSWQ/24959 |
专题 | 地球科学 |
作者单位 | 1.Shandong Univ, Environm Res Inst, Jinan, Shandong, Peoples R China; 2.Hong Kong Polytech Univ, Dept Civil & Environm Engn, Hong Kong, Hong Kong, Peoples R China |
推荐引用方式 GB/T 7714 | Wen, Liang,Xue, Likun,Wang, Xinfeng,et al. Summertime fine particulate nitrate pollution in the North China Plain: increasing trends, formation mechanisms and implications for control policy[J]. ATMOSPHERIC CHEMISTRY AND PHYSICS,2018,18(15):11261-11275. |
APA | Wen, Liang.,Xue, Likun.,Wang, Xinfeng.,Xu, Caihong.,Chen, Tianshu.,...&Wang, Wenxing.(2018).Summertime fine particulate nitrate pollution in the North China Plain: increasing trends, formation mechanisms and implications for control policy.ATMOSPHERIC CHEMISTRY AND PHYSICS,18(15),11261-11275. |
MLA | Wen, Liang,et al."Summertime fine particulate nitrate pollution in the North China Plain: increasing trends, formation mechanisms and implications for control policy".ATMOSPHERIC CHEMISTRY AND PHYSICS 18.15(2018):11261-11275. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论