GSTDTAP  > 气候变化
General descriptor sparks advancements in dye chemistry
admin
2020-05-14
发布年2020
语种英语
国家美国
领域气候变化 ; 地球科学 ; 资源环境
正文(英文)
IMAGE

IMAGE: Researchers from SUTD, DICP, and POSTECH developed a theoretical descriptor ΔE for predicting PET-based fluorescence probes; utilizing this descriptor, they quantitatively designed fluorescent stains of lipid droplets and mitochondria for... view more 

Credit: SUTD

There is an ongoing demand in biological research to accelerate the development of fluorescent probes based on the photo-induced electron transfer (PET) mechanism. By modulating PET formations, these probes significantly change fluorescence intensities, allowing a convenient route to monitor analytes or environmental changes with high sensitivity, vivid visibility and excellent spatiotemporal resolution.

However, the quantitative design of fluorescence probes based on the PET mechanism continues to be a challenging task as dye chemistry is still largely based on trial-and-error.

To address this challenge, an international team of researchers from the Singapore University of Technology and Design (SUTD), Dalian Institute of Chemical Physics in China (DICP), and Pohang University of Science and Technology (POSTECH) in South Korea have developed a theoretical descriptor, ΔE, to quantitatively design PET fluorescence probes (refer to image). Their research paper was published in ACS publications.

The team established the ΔE descriptor by performing quantum chemical calculations on around 140 existing PET probes and analysing the correlations between their electronic structures and their quantum yields, or otherwise known as the efficiency of generating fluorescence.

The researchers also demonstrated that the descriptor was applicable to several families of fluorophores such as BODIPY, fluorescein, and rhodamine derivatives. Based on the descriptor, they accurately predicted and successfully developed wash-free fluorescent stains of lipid droplets and mitochondria for live cell bioimaging.

They were also able to quantitatively design fluorophores with the aggregation induced emission properties. The establishment of this theoretical descriptor enables chemists and biologists to quantitatively search and design new PET-based fluorescence probes.

"Our research goal is to transform the dye chemistry from trial-and-error to molecular engineering, with the state-of-art research tools such as chemical big data and quantum chemical calculations. As we continue to closely work with dye chemists to achieve this goal, we will also be developing high-performance fluorescent materials along the way," said Assistant Professor Liu Xiaogang from SUTD.

###

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

URL查看原文
来源平台EurekAlert
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/251088
专题气候变化
地球科学
资源环境科学
推荐引用方式
GB/T 7714
admin. General descriptor sparks advancements in dye chemistry. 2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。