GSTDTAP  > 资源环境科学
DOI10.1016/j.landurbplan.2017.05.010
Green streets - Quantifying and mapping urban trees with street-level imagery and computer vision
Seiferling, Ian1,2; Naik, Nikhil3; Ratti, Carlo1; Proulx, Raphael2
2017-09-01
发表期刊LANDSCAPE AND URBAN PLANNING
ISSN0169-2046
EISSN1872-6062
出版年2017
卷号165
文章类型Article
语种英语
国家USA; Canada
英文摘要

Traditional tools to map the distribution of urban green space have been hindered by either high cost and labour inputs or poor spatial resolution given the complex spatial structure of urban landscapes. What's more, those tools do not observe the urban landscape from a perspective in which citizens experience a city. We test a novel application of computer vision to quantify urban tree cover at the street-level. We do so by utilizing the open source image data of city streetscapes that is now abundant (Google Street View). We show that a multi-step computer vision algorithm segments and quantifies the percent of tree cover in streetscape images to a high degree of precision. By then modelling the relationship between neighbouring images along city street segments, we are able to extend this image representation and estimate the amount of perceived tree cover in city streetscapes to a relatively high level of accuracy for an entire city. Though not a replacement for high resolution remote sensing (e.g., aerial LiDAR) or intensive field surveys, the method provides a new multi-feature metric of urban tree cover that quantifies tree presence and distribution from the same viewpoint in which citizens experience and see the urban landscape.


英文关键词Urban trees Computer vision Streetscapes Tree cover Greenspace
领域资源环境
收录类别SCI-E ; SSCI
WOS记录号WOS:000406727500010
WOS关键词LANDSCAPE ; QUALITY ; SPACE
WOS类目Ecology ; Environmental Studies ; Geography ; Geography, Physical ; Regional & Urban Planning ; Urban Studies
WOS研究方向Environmental Sciences & Ecology ; Geography ; Physical Geography ; Public Administration ; Urban Studies
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/25156
专题资源环境科学
作者单位1.MIT, Dept Urban Studies & Planning, Senseable City Lab, Room 10-485,77 Massachusetts Ave, Cambridge, MA 02139 USA;
2.Univ Quebec Trois Rivieres, Ctr Rech Interact Bassins Versants Ecosyst Aquat, Canada Res Chair Ecol Integr, 3351 Blvd Forges, Trois Rivieres, PQ G9A 5H7, Canada;
3.MIT, Media Lab, 75 Amherst St, Cambridge, MA 02139 USA
推荐引用方式
GB/T 7714
Seiferling, Ian,Naik, Nikhil,Ratti, Carlo,et al. Green streets - Quantifying and mapping urban trees with street-level imagery and computer vision[J]. LANDSCAPE AND URBAN PLANNING,2017,165.
APA Seiferling, Ian,Naik, Nikhil,Ratti, Carlo,&Proulx, Raphael.(2017).Green streets - Quantifying and mapping urban trees with street-level imagery and computer vision.LANDSCAPE AND URBAN PLANNING,165.
MLA Seiferling, Ian,et al."Green streets - Quantifying and mapping urban trees with street-level imagery and computer vision".LANDSCAPE AND URBAN PLANNING 165(2017).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Seiferling, Ian]的文章
[Naik, Nikhil]的文章
[Ratti, Carlo]的文章
百度学术
百度学术中相似的文章
[Seiferling, Ian]的文章
[Naik, Nikhil]的文章
[Ratti, Carlo]的文章
必应学术
必应学术中相似的文章
[Seiferling, Ian]的文章
[Naik, Nikhil]的文章
[Ratti, Carlo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。