GSTDTAP  > 资源环境科学
DOI10.1016/j.landurbplan.2017.03.004
Bayesian methods to estimate urban growth potential
Smith, Jordan W.1,2; Smart, Lindsey S.3,4; Dorning, Monica A.5; Dupey, Lauren Nicole1,2; Meley, Andreanne3,4; Meentemeyer, Ross K.3,4
2017-07-01
发表期刊LANDSCAPE AND URBAN PLANNING
ISSN0169-2046
EISSN1872-6062
出版年2017
卷号163页码:43481
文章类型Article
语种英语
国家USA
英文摘要

Urban growth often influences the production of ecosystem services. The impacts of urbanization on landscapes can subsequently affect landowners' perceptions, values and decisions regarding their land. Within land-use and land-change research, very few models of dynamic landscape-scale processes like urbanization incorporate empirically-grounded landowner decision-making processes. Very little attention has focused on the heterogeneous decision-making processes that aggregate to influence broader-scale patterns of urbanization. We examine the land-use tradeoffs faced by individual landowners in one of the United States' most rapidly urbanizing regions the urban area surrounding Charlotte, North Carolina. We focus on the land-use decisions of non-industrial private forest owners located across the region's development gradient. A discrete choice experiment is used to determine the critical factors influencing individual forest owners' intent to sell their undeveloped properties across a series of experimentally varied scenarios of urban growth. Data are analyzed using a hierarchical Bayesian approach. The estimates derived from the survey data are used to modify a spatially-explicit trend-based urban development potential model, derived from remotely-sensed imagery and observed changes in the region's socioeconomic and infrastructural characteristics between 2000 and 2011. This modeling approach combines the theoretical underpinnings of behavioral economics with spatiotemporal data describing a region's historical development patterns. By integrating empirical social preference data into spatially-explicit urban growth models, we begin to more realistically capture processes as well as patterns that drive the location, magnitude and rates of urban growth. (C) 2017 Elsevier B.V. All rights reserved.


英文关键词Stated choice methods Urbanization Land change Bayesian model
领域资源环境
收录类别SCI-E ; SSCI
WOS记录号WOS:000401381800001
WOS关键词AGRICULTURAL LAND VALUES ; FAMILY FOREST OWNERS ; UNITED-STATES ; RURAL LANDSCAPE ; BIODIVERSITY ; MOTIVATIONS ; LANDOWNERS ; PRICES ; SPRAWL ; IMPACT
WOS类目Ecology ; Environmental Studies ; Geography ; Geography, Physical ; Regional & Urban Planning ; Urban Studies
WOS研究方向Environmental Sciences & Ecology ; Geography ; Physical Geography ; Public Administration ; Urban Studies
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/25206
专题资源环境科学
作者单位1.Utah State Univ, Dept Environm & Soc, Logan, UT 84322 USA;
2.Utah State Univ, Inst Outdoor Recreat & Tourism, Logan, UT 84322 USA;
3.NC State Univ, Dept Forestry & Environm Resources, Raleigh, NC USA;
4.NC State Univ, Ctr Geospatial Analyt, Raleigh, NC USA;
5.US Geol Survey, Box 25046, Denver, CO 80225 USA
推荐引用方式
GB/T 7714
Smith, Jordan W.,Smart, Lindsey S.,Dorning, Monica A.,et al. Bayesian methods to estimate urban growth potential[J]. LANDSCAPE AND URBAN PLANNING,2017,163:43481.
APA Smith, Jordan W.,Smart, Lindsey S.,Dorning, Monica A.,Dupey, Lauren Nicole,Meley, Andreanne,&Meentemeyer, Ross K..(2017).Bayesian methods to estimate urban growth potential.LANDSCAPE AND URBAN PLANNING,163,43481.
MLA Smith, Jordan W.,et al."Bayesian methods to estimate urban growth potential".LANDSCAPE AND URBAN PLANNING 163(2017):43481.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Smith, Jordan W.]的文章
[Smart, Lindsey S.]的文章
[Dorning, Monica A.]的文章
百度学术
百度学术中相似的文章
[Smith, Jordan W.]的文章
[Smart, Lindsey S.]的文章
[Dorning, Monica A.]的文章
必应学术
必应学术中相似的文章
[Smith, Jordan W.]的文章
[Smart, Lindsey S.]的文章
[Dorning, Monica A.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。